Advanced Propulsion for Fast Lunar Missions

G. Genta
{"title":"Advanced Propulsion for Fast Lunar Missions","authors":"G. Genta","doi":"10.59332/jbis-076-04-0122","DOIUrl":null,"url":null,"abstract":"Half a century ago the Apollo missions carried 12 people to spend a short time on the Moon. After all this time, the space agencies of some countries and a number of private companies committed themselves to restart human lunar exploration, this time with the aim to establish a long-term human presence on our satellite and to start a lunar economy. Most of the planned lunar missions are based on the use of chemical propulsion, which allows to perform the one-way Earth-Moon travel in 3 or 4 days. Recently NASA and DARPA joined forces to develop a nuclear thermal rocket for planetary and lunar missions. In spite of the relatively small distance of the Moon from the Earth, carrying the required payload to the Moon is costly and there is some interest in using more advanced propulsion systems, with the purposes of reducing both the travel time and the cost. In particular, advanced propulsion devices will be developed for travelling to more distant destinations and, when they will be available, they could be used with advantages also for the Moon. The aim of the present paper is to discuss the perspectives which will be opened in the future by the possibility of using nuclear (both thermal and electric) or solar electric propulsion and, in a more distant future, nuclear fusion propulsion to travel to the Moon. A number of examples of lunar missions performed with different types of advanced propulsion show what are the conditions at which these advances can be achieved and which are the constraints that will limit these efforts. Keywords: Lunar Missions, Human Lunar Exploration, Advanced Propulsion, Trajectory Optimization, Specific Impulse Optimization","PeriodicalId":54906,"journal":{"name":"Jbis-Journal of the British Interplanetary Society","volume":"72 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jbis-Journal of the British Interplanetary Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59332/jbis-076-04-0122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Half a century ago the Apollo missions carried 12 people to spend a short time on the Moon. After all this time, the space agencies of some countries and a number of private companies committed themselves to restart human lunar exploration, this time with the aim to establish a long-term human presence on our satellite and to start a lunar economy. Most of the planned lunar missions are based on the use of chemical propulsion, which allows to perform the one-way Earth-Moon travel in 3 or 4 days. Recently NASA and DARPA joined forces to develop a nuclear thermal rocket for planetary and lunar missions. In spite of the relatively small distance of the Moon from the Earth, carrying the required payload to the Moon is costly and there is some interest in using more advanced propulsion systems, with the purposes of reducing both the travel time and the cost. In particular, advanced propulsion devices will be developed for travelling to more distant destinations and, when they will be available, they could be used with advantages also for the Moon. The aim of the present paper is to discuss the perspectives which will be opened in the future by the possibility of using nuclear (both thermal and electric) or solar electric propulsion and, in a more distant future, nuclear fusion propulsion to travel to the Moon. A number of examples of lunar missions performed with different types of advanced propulsion show what are the conditions at which these advances can be achieved and which are the constraints that will limit these efforts. Keywords: Lunar Missions, Human Lunar Exploration, Advanced Propulsion, Trajectory Optimization, Specific Impulse Optimization
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速月球任务的先进推进装置
半个世纪前,阿波罗计划载着12人在月球上短暂停留。在这段时间之后,一些国家的太空机构和一些私人公司承诺重新启动人类的月球探索,这次的目标是在我们的卫星上建立长期的人类存在,并开始月球经济。大多数计划中的探月任务都是基于化学推进的使用,它可以在3到4天内完成单程地月旅行。最近,NASA和DARPA联手开发了一种用于行星和月球任务的核热火箭。尽管月球与地球的距离相对较小,但携带所需的有效载荷到月球是昂贵的,人们对使用更先进的推进系统感兴趣,目的是减少旅行时间和成本。特别是,先进的推进装置将被开发出来,用于前往更遥远的目的地,当它们可用时,它们也可以用于月球。本文的目的是讨论未来使用核能(热和电力)或太阳能电力推进的可能性,以及在更遥远的未来使用核聚变推进前往月球的可能性。使用不同类型的先进推进装置执行月球任务的一些例子表明,实现这些进步的条件是什么,以及限制这些努力的制约因素是什么。关键词:月球任务,人类月球探测,先进推进,轨道优化,比冲优化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Jbis-Journal of the British Interplanetary Society
Jbis-Journal of the British Interplanetary Society Earth and Planetary Sciences-Space and Planetary Science
CiteScore
0.70
自引率
0.00%
发文量
0
期刊介绍: The Journal of the British Interplanetary Society (JBIS) is a technical scientific journal, first published in 1934. JBIS is concerned with space science and space technology. The journal is edited and published monthly in the United Kingdom by the British Interplanetary Society. Although the journal maintains high standards of rigorous peer review, the same with other journals in astronautics, it stands out as a journal willing to allow measured speculation on topics deemed to be at the frontiers of our knowledge in science. The boldness of journal in this respect, marks it out as containing often speculative but visionary papers on the subject of astronautics.
期刊最新文献
A Note on a Procedure for Improving the Development of Government Space Policy The History and Possibilities of British Space Suits A Data Collection Programme for Improving Healthcare in UK Human Spaceflight Ventures Coordinating European Human Spaceflight Programmes with UK Space Policy Objectives The Past, Present and Future of UK Human Spaceflight
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1