{"title":"A solution method for longitudinal vibrations of functionally graded nanorods","authors":"B. Uzun, M. Yaylı","doi":"10.24107/ijeas.782419","DOIUrl":null,"url":null,"abstract":"In the present study, a nonlocal finite element formulation of free longitudinal vibration is derived for functionally graded nano-sized rods. Size dependency is considered via Eringen’s nonlocal elasticity theory. Material properties, Young’s modulus and mass density, of the nano-sized rod change in the thickness direction according to the power-law. For the examined FG nanorod finite element, the axial displacement is specified with a linear function. The stiffness and mass matrices of functionally graded nano-sized rod are found by means of interpolation functions. Functionally graded nanorod is considered with clamped-free boundary condition and its longitudinal vibration analysis is performed.","PeriodicalId":34399,"journal":{"name":"International Journal of Electrical Engineering and Applied Sciences","volume":"35 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Engineering and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24107/ijeas.782419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
In the present study, a nonlocal finite element formulation of free longitudinal vibration is derived for functionally graded nano-sized rods. Size dependency is considered via Eringen’s nonlocal elasticity theory. Material properties, Young’s modulus and mass density, of the nano-sized rod change in the thickness direction according to the power-law. For the examined FG nanorod finite element, the axial displacement is specified with a linear function. The stiffness and mass matrices of functionally graded nano-sized rod are found by means of interpolation functions. Functionally graded nanorod is considered with clamped-free boundary condition and its longitudinal vibration analysis is performed.