Porous Stainless Steel Microsphere Synthesis by a Nonconventional Powder Metallurgy Process Useful in the Cermet-Type Advanced Nuclear Fuel Fabrication

4区 材料科学 Q2 Materials Science Journal of Nanomaterials Pub Date : 2023-04-29 DOI:10.1155/2023/3555763
Luciana Sampaio Ribeiro, Francisco Javier Rios, Armindo Santos
{"title":"Porous Stainless Steel Microsphere Synthesis by a Nonconventional Powder Metallurgy Process Useful in the Cermet-Type Advanced Nuclear Fuel Fabrication","authors":"Luciana Sampaio Ribeiro, Francisco Javier Rios, Armindo Santos","doi":"10.1155/2023/3555763","DOIUrl":null,"url":null,"abstract":"The fabrication of SS (stainless steel)-UO2 cermet-type advanced nuclear fuel pellets suitable for use in power reactors depends on the development of metallic (SS), ceramic (UO2), and cermet (SS-UO2) microspheres with special characteristics. In this work, a nonconventional powder metallurgy process was developed to produce porous SS microspheres aiming to contribute to solve the bottlenecks found in the SS-UO2 cermet pellet manufacturing. SS, UO2, and SS-UO2 microspheres and SS-UO2 cermet pellets were fabricated and characterized (XRD, EDX, EDS, and SEM). Hard (153 ± 5 µm; 132.2 ± 24.7 MPa; 72% TD) and soft (216 ± 10 µm; 1.3 ± 0.4 MPa; 17% TD) SS, hard (176 ± 6 µm; 147.4 ± 25.0 MPa; 99% TD) UO2, and cermet (SS-UO2) microspheres were obtained. The soft porous SS microspheres did not micronize properly in situ, but their high compressibility favors the compaction of the green SS-UO2 cermet pellet; in this pellet, the UO2 microspheres behaved as rigid inclusions. This favored the obtainment of sintered SS-UO2 cermet pellets with high geometric densities (93% TD), excellent metal–ceramic interaction, and the preservation of the physical integrity of the UO2 microspheres. The usage of high fractions of the SS-UO2 cermet microspheres obtained mixed with low fractions of the said soft porous SS microspheres is already under development. This will enable the fabrication of SS-UO2 cermet pellets with a volume fraction greater than 42 vol% UO2, a homogeneous distribution of UO2 microspheres in the metallic matrix, and null connection between them. The oxide–metal reduction mechanisms were discussed. The applicability of the process is already being explored in the manufacture of porous NdFeB microspheres.","PeriodicalId":16442,"journal":{"name":"Journal of Nanomaterials","volume":"148 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2023/3555763","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

The fabrication of SS (stainless steel)-UO2 cermet-type advanced nuclear fuel pellets suitable for use in power reactors depends on the development of metallic (SS), ceramic (UO2), and cermet (SS-UO2) microspheres with special characteristics. In this work, a nonconventional powder metallurgy process was developed to produce porous SS microspheres aiming to contribute to solve the bottlenecks found in the SS-UO2 cermet pellet manufacturing. SS, UO2, and SS-UO2 microspheres and SS-UO2 cermet pellets were fabricated and characterized (XRD, EDX, EDS, and SEM). Hard (153 ± 5 µm; 132.2 ± 24.7 MPa; 72% TD) and soft (216 ± 10 µm; 1.3 ± 0.4 MPa; 17% TD) SS, hard (176 ± 6 µm; 147.4 ± 25.0 MPa; 99% TD) UO2, and cermet (SS-UO2) microspheres were obtained. The soft porous SS microspheres did not micronize properly in situ, but their high compressibility favors the compaction of the green SS-UO2 cermet pellet; in this pellet, the UO2 microspheres behaved as rigid inclusions. This favored the obtainment of sintered SS-UO2 cermet pellets with high geometric densities (93% TD), excellent metal–ceramic interaction, and the preservation of the physical integrity of the UO2 microspheres. The usage of high fractions of the SS-UO2 cermet microspheres obtained mixed with low fractions of the said soft porous SS microspheres is already under development. This will enable the fabrication of SS-UO2 cermet pellets with a volume fraction greater than 42 vol% UO2, a homogeneous distribution of UO2 microspheres in the metallic matrix, and null connection between them. The oxide–metal reduction mechanisms were discussed. The applicability of the process is already being explored in the manufacture of porous NdFeB microspheres.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非常规粉末冶金工艺合成多孔不锈钢微球,用于金属陶瓷型先进核燃料制造
制备适用于动力堆的SS(不锈钢)-UO2金属陶瓷型先进核燃料球团取决于开发具有特殊特性的金属(SS)、陶瓷(UO2)和金属陶瓷(SS-UO2)微球。本研究开发了一种非常规粉末冶金工艺来生产多孔SS微球,旨在解决SS- uo2陶瓷球团制造中的瓶颈问题。制备了SS、UO2、SS-UO2微球和SS-UO2陶瓷球,并对其进行了表征(XRD、EDX、EDS、SEM)。硬(153±5µm;132.2±24.7 MPa;72% TD)和软(216±10µm;1.3±0.4 MPa;17% TD) SS,硬质(176±6µm;147.4±25.0 MPa;得到了99% TD) UO2和金属陶瓷(SS-UO2)微球。软孔SS微球原位微化效果不理想,但其高压缩性有利于绿色SS- uo2陶瓷球团的压实;在该颗粒中,UO2微球表现为刚性包裹体。这有利于获得高几何密度(93% TD)的烧结SS-UO2陶瓷球,具有良好的金属-陶瓷相互作用,并保持了UO2微球的物理完整性。将高分数的SS- uo2陶瓷微球与低分数的上述软多孔SS微球混合使用已经在开发中。这将使制造体积分数大于42体积% UO2的SS-UO2陶瓷颗粒成为可能,UO2微球在金属基体中均匀分布,并且它们之间没有连接。讨论了氧化物-金属还原机理。该工艺的适用性已经在多孔钕铁硼微球的制造中得到了探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanomaterials
Journal of Nanomaterials 工程技术-材料科学:综合
CiteScore
6.10
自引率
0.00%
发文量
577
审稿时长
2.3 months
期刊介绍: The overall aim of the Journal of Nanomaterials is to bring science and applications together on nanoscale and nanostructured materials with emphasis on synthesis, processing, characterization, and applications of materials containing true nanosize dimensions or nanostructures that enable novel/enhanced properties or functions. It is directed at both academic researchers and practicing engineers. Journal of Nanomaterials will highlight the continued growth and new challenges in nanomaterials science, engineering, and nanotechnology, both for application development and for basic research.
期刊最新文献
Influence of the DEA Concentration on Structural and Optical Properties of Nanodot PbS Thin Films Growth by Chemical Solution Deposition: Unveiling Dual Optical Absorption Edges Breaking Barriers in Eco-Friendly Synthesis of Plant-Mediated Metal/Metal Oxide/Bimetallic Nanoparticles: Antibacterial, Anticancer, Mechanism Elucidation, and Versatile Utilizations Catalytic Degradation Efficacy of Silver Nanoparticles Fabricated Using Actinidia deliciosa Peel Extract Differential Silica Nanoparticles Functionalized with Branched Poly(1-Vinyl-1,2,4-Triazole): Antibacterial, Antifungal, and Cytotoxic Qualities Review of the Design and Operation Criteria of a DC Submerged Arc Discharge Carbon Nanostructure Synthesis Installation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1