Learning Body Shape and Pose from Dense Correspondences

Y. Yoshiyasu, L. Gamez
{"title":"Learning Body Shape and Pose from Dense Correspondences","authors":"Y. Yoshiyasu, L. Gamez","doi":"10.2312/egs.20201012","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of learning 3D human pose and body shape from 2D image dataset, without having to use 3D dataset (body shape and pose). The idea is to use dense correspondences between image points and a body surface, which can be annotated on in-the wild 2D images, and extract and aggregate 3D information from them. To do so, we propose a training strategy called ``deform-and-learn\" where we alternate deformable surface registration and training of deep convolutional neural networks (ConvNets). Unlike previous approaches, our method does not require 3D pose annotations from a motion capture (MoCap) system or human intervention to validate 3D pose annotations.","PeriodicalId":72958,"journal":{"name":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","volume":"127 1","pages":"37-40"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/egs.20201012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we address the problem of learning 3D human pose and body shape from 2D image dataset, without having to use 3D dataset (body shape and pose). The idea is to use dense correspondences between image points and a body surface, which can be annotated on in-the wild 2D images, and extract and aggregate 3D information from them. To do so, we propose a training strategy called ``deform-and-learn" where we alternate deformable surface registration and training of deep convolutional neural networks (ConvNets). Unlike previous approaches, our method does not require 3D pose annotations from a motion capture (MoCap) system or human intervention to validate 3D pose annotations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从密集对应中学习体态和姿势
在本文中,我们解决了从2D图像数据集中学习3D人体姿势和身体形状的问题,而无需使用3D数据集(身体形状和姿势)。这个想法是利用图像点和体表之间的密集对应关系,可以在野外的2D图像上进行注释,并从中提取和聚合3D信息。为此,我们提出了一种称为“变形-学习”的训练策略,其中我们交替使用深度卷积神经网络(ConvNets)的可变形表面配准和训练。与以前的方法不同,我们的方法不需要来自动作捕捉(MoCap)系统的3D姿势注释或人工干预来验证3D姿势注释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AvatarGo: Plug and Play self-avatars for VR Reconstructing 3D Face of Infants in Social Interactions Using Morphable Models of Non-Infants. Dyani White Hawk: Speaking to Relatives, Kemper Museum of Contemporary Art, Kansas City, MO, 18 February–16 May 2021 Andy Warhol, Tate Modern, London, 12 March–15 November 2020 Investigating Fluidity in Hans Haacke’s Condensation Cube (1965) and Gustave Metzger’s Liquid Crystal Environment (1965)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1