Characterizing common substructures of ligands for GPCR protein subfamilies.

Bekir Erguner, M. Hattori, S. Goto, M. Kanehisa
{"title":"Characterizing common substructures of ligands for GPCR protein subfamilies.","authors":"Bekir Erguner, M. Hattori, S. Goto, M. Kanehisa","doi":"10.1142/9781848166585_0003","DOIUrl":null,"url":null,"abstract":"The G-protein coupled receptor (GPCR) superfamily is the largest class of proteins with therapeutic value. More than 40% of present prescription drugs are GPCR ligands. The high therapeutic value of GPCR proteins and recent advancements in virtual screening methods gave rise to many virtual screening studies for GPCR ligands. However, in spite of vast amounts of research studying their functions and characteristics, 3D structures of most GPCRs are still unknown. This makes target-based virtual screenings of GPCR ligands extremely difficult, and successful virtual screening techniques rely heavily on ligand information. These virtual screening methods focus on specific features of ligands on GPCR protein level, and common features of ligands on higher levels of GPCR classification are yet to be studied. Here we extracted common substructures of GPCR ligands of GPCR protein subfamilies. We used the SIMCOMP, a graph-based chemical structure comparison program, and hierarchical clustering to reveal common substructures. We applied our method to 850 GPCR ligands and we found 53 common substructures covering 439 ligands. These substructures contribute to deeper understanding of structural features of GPCR ligands which can be used in new drug discovery methods.","PeriodicalId":73143,"journal":{"name":"Genome informatics. International Conference on Genome Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/9781848166585_0003","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome informatics. International Conference on Genome Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781848166585_0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The G-protein coupled receptor (GPCR) superfamily is the largest class of proteins with therapeutic value. More than 40% of present prescription drugs are GPCR ligands. The high therapeutic value of GPCR proteins and recent advancements in virtual screening methods gave rise to many virtual screening studies for GPCR ligands. However, in spite of vast amounts of research studying their functions and characteristics, 3D structures of most GPCRs are still unknown. This makes target-based virtual screenings of GPCR ligands extremely difficult, and successful virtual screening techniques rely heavily on ligand information. These virtual screening methods focus on specific features of ligands on GPCR protein level, and common features of ligands on higher levels of GPCR classification are yet to be studied. Here we extracted common substructures of GPCR ligands of GPCR protein subfamilies. We used the SIMCOMP, a graph-based chemical structure comparison program, and hierarchical clustering to reveal common substructures. We applied our method to 850 GPCR ligands and we found 53 common substructures covering 439 ligands. These substructures contribute to deeper understanding of structural features of GPCR ligands which can be used in new drug discovery methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
表征GPCR蛋白亚家族配体的共同亚结构。
g蛋白偶联受体(GPCR)超家族是最大的一类具有治疗价值的蛋白质。目前超过40%的处方药是GPCR配体。GPCR蛋白的高治疗价值和虚拟筛选方法的最新进展,引起了许多GPCR配体的虚拟筛选研究。然而,尽管对其功能和特性进行了大量的研究,但大多数gpcr的三维结构仍然未知。这使得基于靶标的GPCR配体虚拟筛选非常困难,而成功的虚拟筛选技术在很大程度上依赖于配体信息。这些虚拟筛选方法侧重于配体在GPCR蛋白水平上的特异性特征,配体在更高水平GPCR分类上的共性特征尚待研究。本文提取了GPCR蛋白亚家族中GPCR配体的共同亚结构。我们使用SIMCOMP(一个基于图的化学结构比较程序)和分层聚类来揭示共同的子结构。我们将该方法应用于850个GPCR配体,发现53个共同亚结构覆盖439个配体。这些亚结构有助于更深入地了解GPCR配体的结构特征,可用于新药物发现方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Docking-calculation-based method for predicting protein-RNA interactions. Sign: large-scale gene network estimation environment for high performance computing. Linear regression models predicting strength of transcriptional activity of promoters. Database for crude drugs and Kampo medicine. Mechanism of cell cycle disruption by multiple p53 pulses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1