T. Manszewski, Kriti Singh, B. Imiolczyk, M. Jaskólski
{"title":"An enzyme captured in two conformational states: crystal structure of S-adenosyl-L-homocysteine hydrolase from Bradyrhizobium elkanii.","authors":"T. Manszewski, Kriti Singh, B. Imiolczyk, M. Jaskólski","doi":"10.1107/S1399004715018659","DOIUrl":null,"url":null,"abstract":"S-Adenosyl-L-homocysteine hydrolase (SAHase) is involved in the enzymatic regulation of S-adenosyl-L-methionine (SAM)-dependent methylation reactions. After methyl-group transfer from SAM, S-adenosyl-L-homocysteine (SAH) is formed as a byproduct, which in turn is hydrolyzed to adenosine (Ado) and homocysteine (Hcy) by SAHase. The crystal structure of BeSAHase, an SAHase from Bradyrhizobium elkanii, which is a nitrogen-fixing bacterial symbiont of legume plants, was determined at 1.7 Å resolution, showing the domain organization (substrate-binding domain, NAD(+) cofactor-binding domain and dimerization domain) of the subunits. The protein crystallized in its biologically relevant tetrameric form, with three subunits in a closed conformation enforced by complex formation with the Ado product of the enzymatic reaction. The fourth subunit is ligand-free and has an open conformation. The BeSAHase structure therefore provides a unique snapshot of the domain movement of the enzyme induced by the binding of its natural ligands.","PeriodicalId":6895,"journal":{"name":"Acta Crystallographica Section D: Biological Crystallography","volume":"14 1","pages":"2422-32"},"PeriodicalIF":2.2000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S1399004715018659","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section D: Biological Crystallography","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S1399004715018659","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
S-Adenosyl-L-homocysteine hydrolase (SAHase) is involved in the enzymatic regulation of S-adenosyl-L-methionine (SAM)-dependent methylation reactions. After methyl-group transfer from SAM, S-adenosyl-L-homocysteine (SAH) is formed as a byproduct, which in turn is hydrolyzed to adenosine (Ado) and homocysteine (Hcy) by SAHase. The crystal structure of BeSAHase, an SAHase from Bradyrhizobium elkanii, which is a nitrogen-fixing bacterial symbiont of legume plants, was determined at 1.7 Å resolution, showing the domain organization (substrate-binding domain, NAD(+) cofactor-binding domain and dimerization domain) of the subunits. The protein crystallized in its biologically relevant tetrameric form, with three subunits in a closed conformation enforced by complex formation with the Ado product of the enzymatic reaction. The fourth subunit is ligand-free and has an open conformation. The BeSAHase structure therefore provides a unique snapshot of the domain movement of the enzyme induced by the binding of its natural ligands.
期刊介绍:
Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them.
Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged.
Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.