Erythrocyte interaction with titanium nanostructured surfaces.

In vitro models Pub Date : 2022-08-31 eCollection Date: 2022-11-01 DOI:10.1007/s44164-022-00031-y
Harvinder Singh Virk, Ketul C Popat
{"title":"Erythrocyte interaction with titanium nanostructured surfaces.","authors":"Harvinder Singh Virk, Ketul C Popat","doi":"10.1007/s44164-022-00031-y","DOIUrl":null,"url":null,"abstract":"<p><p>Titanium and its alloys are used to make different medical devices such as stents, artificial heart valves, and catheters for cardiovascular diseases due to their superior biocompatibility. Thrombus formation begins on the surface of these devices as soon as they encounter blood. This leads to the formation of blood clots, which obstructs the flow of blood that leads to severe complications. Recent advancements in nanoscale fabrication and superhydrophobic surface modification techniques have demonstrated that these surfaces have antiadhesive properties and the ability to reduce thrombosis. In this study, the interaction of erythrocytes and whole blood clotting kinetics on superhydrophobic titanium nanostructured surfaces was investigated. These surfaces were characterized for their wettability (contact angle), surface morphology and topography (scanning electron microscopy (SEM)), and crystallinity (glancing angled X-ray diffraction (GAXRD)). Erythrocyte morphology on different surfaces was characterized using SEM, and overall cell viability was demonstrated through fluorescence microscopy. The hemocompatibility of these surfaces was characterized using commercially available assays: thrombin generation assay thrombin generation, hemolytic assay hemolysis, and complement convertase assay complement activity. The results indicate that superhydrophobic titanium nanostructured surfaces had lower erythrocyte adhesion, less morphological changes in adhered cells, lower thrombin generation, lower complement activation, and were less cytotoxic compared to control surfaces. Thus, superhydrophobic titanium nanostructured surfaces may be a promising approach to prevent thrombosis for several medical devices.</p>","PeriodicalId":73357,"journal":{"name":"In vitro models","volume":"23 1","pages":"347-363"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756472/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In vitro models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44164-022-00031-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Titanium and its alloys are used to make different medical devices such as stents, artificial heart valves, and catheters for cardiovascular diseases due to their superior biocompatibility. Thrombus formation begins on the surface of these devices as soon as they encounter blood. This leads to the formation of blood clots, which obstructs the flow of blood that leads to severe complications. Recent advancements in nanoscale fabrication and superhydrophobic surface modification techniques have demonstrated that these surfaces have antiadhesive properties and the ability to reduce thrombosis. In this study, the interaction of erythrocytes and whole blood clotting kinetics on superhydrophobic titanium nanostructured surfaces was investigated. These surfaces were characterized for their wettability (contact angle), surface morphology and topography (scanning electron microscopy (SEM)), and crystallinity (glancing angled X-ray diffraction (GAXRD)). Erythrocyte morphology on different surfaces was characterized using SEM, and overall cell viability was demonstrated through fluorescence microscopy. The hemocompatibility of these surfaces was characterized using commercially available assays: thrombin generation assay thrombin generation, hemolytic assay hemolysis, and complement convertase assay complement activity. The results indicate that superhydrophobic titanium nanostructured surfaces had lower erythrocyte adhesion, less morphological changes in adhered cells, lower thrombin generation, lower complement activation, and were less cytotoxic compared to control surfaces. Thus, superhydrophobic titanium nanostructured surfaces may be a promising approach to prevent thrombosis for several medical devices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
红细胞与钛纳米结构表面的相互作用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of a primary cellular airway model for inhalative drug delivery in comparison with the established permanent cell lines CaLu3 and RPMI 2650. Mechanical and functional characterisation of a 3D porous biomimetic extracellular matrix to study insulin secretion from pancreatic β-cell lines. Adipo-on-chip: a microphysiological system to culture human mesenchymal stem cells with improved adipogenic differentiation. Hybrid additive manufacturing for Zn-Mg casting for biomedical application. Development and characterisation of a novel complex triple cell culture model of the human alveolar epithelial barrier.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1