{"title":"Categorización semi-supervisada de Documentos usando la Web como corpus","authors":"R. Cabrera","doi":"10.4995/THESIS/10251/6562","DOIUrl":null,"url":null,"abstract":"Tesis doctoral en reconocimiento de formas e inteligencia artificial realizada en la Universidad Politecnica de Valencia por Rafael Guzman Cabrera bajo la direccion de los doctores Paolo Rosso y Manuel Montes y Gomez (INAOE, Mexico). La defensa de la tesis tuvo lugar el 24 de noviembre ante el tribunal formado por los doctores Manuel Palomar Sanz (Universidad de Alicante), Paloma Martinez Fernandez (Universidad Carlos III de Madrid), Luis Villasenor Pineda (INAOE, Mexico), Grigori Sidorov (Instituto Politecnico Nacional, Mexico) y Antonio Molina Marco (Universidad Politecnica de Valencia). La calificacion obtenida fue Sobresaliente Cum Laude por unanimidad.\n\nLa mayoria de los metodos para la categorizacion automatica de documentos estan basados en tecnicas de aprendizaje supervisado y, por consecuencia, tienen el problema de requerir un gran numero de instancias de entrenamiento. Con la finalidad de afrontar este problema, en esta tesis se propone un nuevo metodo semi-supervisado para la categorizacion de documentos, el cual considera la extraccion automatica de ejemplos no etiquetados de la Web y su incorporacion al conjunto de entrenamiento. los resultados obtenidos permiten ver la efectividad del metodo desarrollado.","PeriodicalId":43929,"journal":{"name":"Procesamiento del Lenguaje Natural","volume":"99 1","pages":"127-128"},"PeriodicalIF":1.2000,"publicationDate":"2011-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procesamiento del Lenguaje Natural","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/THESIS/10251/6562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Tesis doctoral en reconocimiento de formas e inteligencia artificial realizada en la Universidad Politecnica de Valencia por Rafael Guzman Cabrera bajo la direccion de los doctores Paolo Rosso y Manuel Montes y Gomez (INAOE, Mexico). La defensa de la tesis tuvo lugar el 24 de noviembre ante el tribunal formado por los doctores Manuel Palomar Sanz (Universidad de Alicante), Paloma Martinez Fernandez (Universidad Carlos III de Madrid), Luis Villasenor Pineda (INAOE, Mexico), Grigori Sidorov (Instituto Politecnico Nacional, Mexico) y Antonio Molina Marco (Universidad Politecnica de Valencia). La calificacion obtenida fue Sobresaliente Cum Laude por unanimidad.
La mayoria de los metodos para la categorizacion automatica de documentos estan basados en tecnicas de aprendizaje supervisado y, por consecuencia, tienen el problema de requerir un gran numero de instancias de entrenamiento. Con la finalidad de afrontar este problema, en esta tesis se propone un nuevo metodo semi-supervisado para la categorizacion de documentos, el cual considera la extraccion automatica de ejemplos no etiquetados de la Web y su incorporacion al conjunto de entrenamiento. los resultados obtenidos permiten ver la efectividad del metodo desarrollado.