Rasoul Hosseini, F. Keshavarzi, Nahid Haghnazari, C. Karami
{"title":"Removal of azithromycin from aqueous solutions using Fe2O3/Ag/Zn nanocomposites","authors":"Rasoul Hosseini, F. Keshavarzi, Nahid Haghnazari, C. Karami","doi":"10.5004/dwt.2023.29485","DOIUrl":null,"url":null,"abstract":"Drugs are essential pollutants in the environment due to their resistant structure, and their high consumption in treating humans and animals. The entry of antibiotics as hospital waste into aquatic environments is considered one of the critical environmental means due to their high stability. The design and synthesis of Fe 2 O 3 /Ag/Zn as a new structure of Fe 2 O 3 were reported, because of its resis- tance of the structure to air and high temperature, the adsorbent of azithromycin in wastewater was studied. After characterization of Fe 2 O 3 /Ag/Zn by scanning electron microscopy, energy-dis- persive X-ray spectroscopy, mapping, transmission electron microscopy, X-ray diffraction and Fourier-transform infrared spectroscopy. Then, to remove azithromycin, the effect of factors such as pH, the concentration of azithromycin solution, adsorbent dose, time and temperature was evalu-ated using an optimization process. The results showed that the optimal conditions for removing of 96% of azithromycin (10 mg/L) with 1.5 g/L of Fe 2 O 3 /Ag/Zn, pH = 5, and 30 min at room temperature, In other words, the nano absorbent has a good ability to remove azithromycin from water solution, which is very important from environmental aspects.","PeriodicalId":11260,"journal":{"name":"Desalination and Water Treatment","volume":"38 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination and Water Treatment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5004/dwt.2023.29485","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Drugs are essential pollutants in the environment due to their resistant structure, and their high consumption in treating humans and animals. The entry of antibiotics as hospital waste into aquatic environments is considered one of the critical environmental means due to their high stability. The design and synthesis of Fe 2 O 3 /Ag/Zn as a new structure of Fe 2 O 3 were reported, because of its resis- tance of the structure to air and high temperature, the adsorbent of azithromycin in wastewater was studied. After characterization of Fe 2 O 3 /Ag/Zn by scanning electron microscopy, energy-dis- persive X-ray spectroscopy, mapping, transmission electron microscopy, X-ray diffraction and Fourier-transform infrared spectroscopy. Then, to remove azithromycin, the effect of factors such as pH, the concentration of azithromycin solution, adsorbent dose, time and temperature was evalu-ated using an optimization process. The results showed that the optimal conditions for removing of 96% of azithromycin (10 mg/L) with 1.5 g/L of Fe 2 O 3 /Ag/Zn, pH = 5, and 30 min at room temperature, In other words, the nano absorbent has a good ability to remove azithromycin from water solution, which is very important from environmental aspects.
期刊介绍:
The journal is dedicated to research and application of desalination technology, environment and energy considerations, integrated water management, water reuse, wastewater and related topics.