Nur Sabrina Azmi, Azurah A Samah, Hairudin Abdul Majid, Zuraini Ali Shah, H. Hashim, Nuraina Syaza Azman, Ezzeddin Kamil Mohamed Hashim
{"title":"Classifying Sarcoma Cancer Using Deep Neural Networks Based on Multi-Omics Data","authors":"Nur Sabrina Azmi, Azurah A Samah, Hairudin Abdul Majid, Zuraini Ali Shah, H. Hashim, Nuraina Syaza Azman, Ezzeddin Kamil Mohamed Hashim","doi":"10.11113/ijic.v12n1.360","DOIUrl":null,"url":null,"abstract":"The challenge in classifying cancer may lead to inaccurate classification of cancers, especially sarcoma cancer since it consists of rare types of cancer. It is hard for the clinician to confirm the patient's condition because an accurate diagnosis can only be made by the specialist pathology. Therefore, instead of a single omics is used to identify the disease marker, an approach of integrating these omics to represent multi-omics brings more advantages in detecting and presenting the phenotype of the cancers. Nowadays, the advancement of computational models especially deep learning offered promising approaches in solving high-level omics of data with faster processing speed. Hence, the purpose of this study is to classify cancer and non-cancerous patients using Stacked Denoising Autoencoder (SDAE) and One-dimensional Convolutional Neural Network (1D CNN) to evaluate which algorithm classifies better using high correlated multi-omics data. The study employed both computational models to fit multi-omics dataset. Sarcoma omics datasets used in this study was obtained from the Multi-Omics Cancer Benchmark TCGA Pre-processed Data of ACGT Ron Shamir Lab repository. From the results, the accuracy obtained for the SDAE was 50.93% and 52.78% for the 1D CNN. The result show 1D CNN model outperformed SDAE in classifying sarcoma cancer.","PeriodicalId":50314,"journal":{"name":"International Journal of Innovative Computing Information and Control","volume":"98 ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Innovative Computing Information and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/ijic.v12n1.360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The challenge in classifying cancer may lead to inaccurate classification of cancers, especially sarcoma cancer since it consists of rare types of cancer. It is hard for the clinician to confirm the patient's condition because an accurate diagnosis can only be made by the specialist pathology. Therefore, instead of a single omics is used to identify the disease marker, an approach of integrating these omics to represent multi-omics brings more advantages in detecting and presenting the phenotype of the cancers. Nowadays, the advancement of computational models especially deep learning offered promising approaches in solving high-level omics of data with faster processing speed. Hence, the purpose of this study is to classify cancer and non-cancerous patients using Stacked Denoising Autoencoder (SDAE) and One-dimensional Convolutional Neural Network (1D CNN) to evaluate which algorithm classifies better using high correlated multi-omics data. The study employed both computational models to fit multi-omics dataset. Sarcoma omics datasets used in this study was obtained from the Multi-Omics Cancer Benchmark TCGA Pre-processed Data of ACGT Ron Shamir Lab repository. From the results, the accuracy obtained for the SDAE was 50.93% and 52.78% for the 1D CNN. The result show 1D CNN model outperformed SDAE in classifying sarcoma cancer.
期刊介绍:
The primary aim of the International Journal of Innovative Computing, Information and Control (IJICIC) is to publish high-quality papers of new developments and trends, novel techniques and approaches, innovative methodologies and technologies on the theory and applications of intelligent systems, information and control. The IJICIC is a peer-reviewed English language journal and is published bimonthly