A cross-lingual sentence pair interaction feature capture model based on pseudo-corpus and multilingual embedding

IF 1.4 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE AI Communications Pub Date : 2022-04-13 DOI:10.3233/aic-210085
Gang Liu, Yichao Dong, Kai Wang, Zhizheng Yan
{"title":"A cross-lingual sentence pair interaction feature capture model based on pseudo-corpus and multilingual embedding","authors":"Gang Liu, Yichao Dong, Kai Wang, Zhizheng Yan","doi":"10.3233/aic-210085","DOIUrl":null,"url":null,"abstract":"Recently, the emergence of the digital language division and the availability of cross-lingual benchmarks make researches of cross-lingual texts more popular. However, the performance of existing methods based on mapping relation are not good enough, because sometimes the structures of language spaces are not isomorphic. Besides, polysemy makes the extraction of interaction features hard. For cross-lingual word embedding, a model named Cross-lingual Word Embedding Space Based on Pseudo Corpus (CWE-PC) is proposed to obtain cross-lingual and multilingual word embedding. For cross-lingual sentence pair interaction feature capture, a Cross-language Feature Capture Based on Similarity Matrix (CFC-SM) model is built to extract cross-lingual interaction features. ELMo pretrained model and multiple layer convolution are used to alleviate polysemy and extract interaction features. These models are evaluated on multiple language pairs and results show that they outperform the state-of-the-art cross-lingual word embedding methods.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":"11 1","pages":"1-14"},"PeriodicalIF":1.4000,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/aic-210085","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, the emergence of the digital language division and the availability of cross-lingual benchmarks make researches of cross-lingual texts more popular. However, the performance of existing methods based on mapping relation are not good enough, because sometimes the structures of language spaces are not isomorphic. Besides, polysemy makes the extraction of interaction features hard. For cross-lingual word embedding, a model named Cross-lingual Word Embedding Space Based on Pseudo Corpus (CWE-PC) is proposed to obtain cross-lingual and multilingual word embedding. For cross-lingual sentence pair interaction feature capture, a Cross-language Feature Capture Based on Similarity Matrix (CFC-SM) model is built to extract cross-lingual interaction features. ELMo pretrained model and multiple layer convolution are used to alleviate polysemy and extract interaction features. These models are evaluated on multiple language pairs and results show that they outperform the state-of-the-art cross-lingual word embedding methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于伪语料库和多语言嵌入的跨语言句子对交互特征捕获模型
近年来,数字语言划分的出现和跨语言基准的可用性使得跨语言文本的研究更加流行。然而,由于语言空间的结构有时不同构,现有的基于映射关系的方法的性能不够好。此外,一词多义使得交互特征的提取变得困难。在跨语言词嵌入方面,提出了基于伪语料库的跨语言词嵌入空间模型(CWE-PC),实现了跨语言和多语言词嵌入。针对跨语言句子对交互特征的提取,建立了基于相似矩阵的跨语言交互特征提取模型(CFC-SM)。采用ELMo预训练模型和多层卷积来缓解多义现象,提取交互特征。这些模型在多个语言对上进行了评估,结果表明它们优于最先进的跨语言词嵌入方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AI Communications
AI Communications 工程技术-计算机:人工智能
CiteScore
2.30
自引率
12.50%
发文量
34
审稿时长
4.5 months
期刊介绍: AI Communications is a journal on artificial intelligence (AI) which has a close relationship to EurAI (European Association for Artificial Intelligence, formerly ECCAI). It covers the whole AI community: Scientific institutions as well as commercial and industrial companies. AI Communications aims to enhance contacts and information exchange between AI researchers and developers, and to provide supranational information to those concerned with AI and advanced information processing. AI Communications publishes refereed articles concerning scientific and technical AI procedures, provided they are of sufficient interest to a large readership of both scientific and practical background. In addition it contains high-level background material, both at the technical level as well as the level of opinions, policies and news.
期刊最新文献
Multi-feature fusion dehazing based on CycleGAN Spatio-temporal deep learning framework for pedestrian intention prediction in urban traffic scenes Open-world object detection: A solution based on reselection mechanism and feature disentanglement MantaRay-ProM: An efficient process model discovery algorithm Token-modification adversarial attacks for natural language processing: A survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1