Mid-infrared active scanning imaging with PbSnTe wavelength-tunable laser diodes grown via liquid-phase epitaxy

Arata Yasuda
{"title":"Mid-infrared active scanning imaging with PbSnTe wavelength-tunable laser diodes grown via liquid-phase epitaxy","authors":"Arata Yasuda","doi":"10.4172/2469-410X.C1.006","DOIUrl":null,"url":null,"abstract":"L interaction with materials is an ongoing and developing field of Photonics and applied physics. Polymeric materials have very important applications in biology and medical science. For this purpose, the surface of the material in contact with the blood and the biological cells have to be blood and bio compatible. The surface modification of the polymeric materials, then, is intersted for the biological applications. Among the various methods for the surface modification, laser interaction has very advantages respect to the others. With proper selection of the laser parameters, the optimum improvement is obtained. Here laser surface modification of polymeric material relying on polyethersulfone (PES) membrane and film is discussed. The effects of the most important laser parameters including the laser wavelength, the fluence, the number of pulses, the pulse repetition rate and the pulse duration is investigated and the optimized condition is found. Beside the surface modification for the biological applcations, the other results of the interaction like the effects of the presence of pedestal pulse in ultrashort pulses, the possibility for the investigation of the bulk of the membrane with laser treatment and the modification of the surface for the other applications are talked. (PES is the most important applied polymeric material for the hemodialysis filters.)","PeriodicalId":92245,"journal":{"name":"Journal of lasers, optics & photonics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of lasers, optics & photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2469-410X.C1.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

L interaction with materials is an ongoing and developing field of Photonics and applied physics. Polymeric materials have very important applications in biology and medical science. For this purpose, the surface of the material in contact with the blood and the biological cells have to be blood and bio compatible. The surface modification of the polymeric materials, then, is intersted for the biological applications. Among the various methods for the surface modification, laser interaction has very advantages respect to the others. With proper selection of the laser parameters, the optimum improvement is obtained. Here laser surface modification of polymeric material relying on polyethersulfone (PES) membrane and film is discussed. The effects of the most important laser parameters including the laser wavelength, the fluence, the number of pulses, the pulse repetition rate and the pulse duration is investigated and the optimized condition is found. Beside the surface modification for the biological applcations, the other results of the interaction like the effects of the presence of pedestal pulse in ultrashort pulses, the possibility for the investigation of the bulk of the membrane with laser treatment and the modification of the surface for the other applications are talked. (PES is the most important applied polymeric material for the hemodialysis filters.)
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
液相外延生长PbSnTe波长可调激光二极管的中红外主动扫描成像
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Short Note on Laser Optics Photorefractive waveguides Hot money Quantum electrodynamics with an artificial atom in a superconducting circuit High speed laser based intersatellite link systems for harsh environment of space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1