D. Wright, J. M. Williams, J. McDonald, Julie A. Carlsten, Michael D. Taylor
{"title":"Muscle-derived neurotrophin-3 reduces injury-induced proprioceptive degeneration in neonatal mice.","authors":"D. Wright, J. M. Williams, J. McDonald, Julie A. Carlsten, Michael D. Taylor","doi":"10.1002/NEU.10024","DOIUrl":null,"url":null,"abstract":"During perinatal development, proprioceptive muscle afferents are quite sensitive to nerve injury. Here, we have used transgenic mice that overexpress neurotrophin-3 (NT-3) in skeletal muscle (myo/NT-3 mice) to explore whether NT-3 plays a neuroprotective role for perinatal muscle afferents following nerve injury. Measurements of NT-3 mRNA using RT-PCR revealed that levels of endogenous NT-3 mRNA in wild-type muscles remained constant during the first postnatal week following nerve crush or nerve section on postnatal day (PN) 1. In comparison, myo/NT-3 mice had significantly elevated levels of NT-3 mRNA that were maintained or increased following injury. To assess whether muscle-derived NT-3 could prevent injury-induced neuronal death, neuron survival in the DRG was analyzed in mice 5 days after sciatic nerve crush on PN3. Retrograde prelabeling of muscle afferents and parvalbumin immunocytochemistry both revealed that overexpression of NT-3 in muscle significantly reduced neuronal loss following injury. Similar neuroprotective effects of NT-3 were observed in wild-type mice injected with exogenous NT-3 in the gastrocnemius muscles. To test whether NT-3 could prevent muscle spindle degeneration, spindle number and morphology were assessed 3 weeks after sciatic nerve crush or section on PN1. No spindles were present in either wildtype or myo/NT-3 muscles after nerve section, demonstrating that NT-3 overexpression cannot maintain spindles following complete denervation. Moreover, NT-3 overexpression could not prevent moderate spindle loss in muscle and did not stimulate new spindle formation following nerve crush. Our results demonstrate that in addition to its early actions on sensory neuron generation and naturally occurring cell death, NT-3 has important neuroprotective effects on muscle afferents during postnatal development.","PeriodicalId":16540,"journal":{"name":"Journal of neurobiology","volume":"89 7","pages":"198-208"},"PeriodicalIF":0.0000,"publicationDate":"2002-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/NEU.10024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
During perinatal development, proprioceptive muscle afferents are quite sensitive to nerve injury. Here, we have used transgenic mice that overexpress neurotrophin-3 (NT-3) in skeletal muscle (myo/NT-3 mice) to explore whether NT-3 plays a neuroprotective role for perinatal muscle afferents following nerve injury. Measurements of NT-3 mRNA using RT-PCR revealed that levels of endogenous NT-3 mRNA in wild-type muscles remained constant during the first postnatal week following nerve crush or nerve section on postnatal day (PN) 1. In comparison, myo/NT-3 mice had significantly elevated levels of NT-3 mRNA that were maintained or increased following injury. To assess whether muscle-derived NT-3 could prevent injury-induced neuronal death, neuron survival in the DRG was analyzed in mice 5 days after sciatic nerve crush on PN3. Retrograde prelabeling of muscle afferents and parvalbumin immunocytochemistry both revealed that overexpression of NT-3 in muscle significantly reduced neuronal loss following injury. Similar neuroprotective effects of NT-3 were observed in wild-type mice injected with exogenous NT-3 in the gastrocnemius muscles. To test whether NT-3 could prevent muscle spindle degeneration, spindle number and morphology were assessed 3 weeks after sciatic nerve crush or section on PN1. No spindles were present in either wildtype or myo/NT-3 muscles after nerve section, demonstrating that NT-3 overexpression cannot maintain spindles following complete denervation. Moreover, NT-3 overexpression could not prevent moderate spindle loss in muscle and did not stimulate new spindle formation following nerve crush. Our results demonstrate that in addition to its early actions on sensory neuron generation and naturally occurring cell death, NT-3 has important neuroprotective effects on muscle afferents during postnatal development.