Water Surface Monitoring of Qingtongxia West Main Canal by Sentinel-2 Satellite Observations

Rui Li, Jiancheng Shi, T. Zhao, Jinmei Pan
{"title":"Water Surface Monitoring of Qingtongxia West Main Canal by Sentinel-2 Satellite Observations","authors":"Rui Li, Jiancheng Shi, T. Zhao, Jinmei Pan","doi":"10.1109/IGARSS.2019.8899194","DOIUrl":null,"url":null,"abstract":"The knowledge and understanding of intra- and inter annual characteristics of canal water is crucial for agricultural water management. The narrow shape of canal greatly limits the application of moderate-resolution remote sensing technologies. Based on newly available Sentinel-2 Multispectral Instrument (MSI) imagery with frequent revisit and higher spatial resolution, we identified variation of water/bank boundary by Roberts, Sobel, Prewitt, Laplacian of Gaussian and Canny 5 edge detectors and furtherly compared the water width results with estimation by ground measurement. The preliminary results show that all detectors can successfully monitor seasonal variation of canal water surface. Canny detector is most stable among 5 methods for time series monitoring, although overestimated the water width during dry period. Our methods and results reveal the great potential of Sentinel-2 imagery for canal water utilization and irrigation management.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"65 1","pages":"4423-4426"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8899194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The knowledge and understanding of intra- and inter annual characteristics of canal water is crucial for agricultural water management. The narrow shape of canal greatly limits the application of moderate-resolution remote sensing technologies. Based on newly available Sentinel-2 Multispectral Instrument (MSI) imagery with frequent revisit and higher spatial resolution, we identified variation of water/bank boundary by Roberts, Sobel, Prewitt, Laplacian of Gaussian and Canny 5 edge detectors and furtherly compared the water width results with estimation by ground measurement. The preliminary results show that all detectors can successfully monitor seasonal variation of canal water surface. Canny detector is most stable among 5 methods for time series monitoring, although overestimated the water width during dry period. Our methods and results reveal the great potential of Sentinel-2 imagery for canal water utilization and irrigation management.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
青铜峡西主渠水面监测的哨兵2号卫星观测
了解运河水的年内和年际特征对农业用水管理至关重要。运河狭窄的形状极大地限制了中分辨率遥感技术的应用。基于新近获得的Sentinel-2多光谱仪器(MSI)频繁重访和更高空间分辨率的图像,我们识别了Roberts、Sobel、Prewitt、Laplacian、Gaussian和Canny 5边缘检测器的水/岸边界变化,并进一步将水宽度结果与地面测量结果进行了比较。初步结果表明,各探测器均能成功监测运河水面的季节变化。在5种时间序列监测方法中,Canny检测法的稳定性最好,但对干期水体宽度的估计过高。我们的方法和结果揭示了Sentinel-2图像在运河水资源利用和灌溉管理方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Question Answering From Remote Sensing Images The Impact of Additive Noise on Polarimetric Radarsat-2 Data Covering Oil Slicks Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds Burn Severity Estimation in Northern Australia Tropical Savannas Using Radiative Transfer Model and Sentinel-2 Data The Truth About Ground Truth: Label Noise in Human-Generated Reference Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1