{"title":"Efficient transient electrothermal simulation of CMOS VLSI circuits under electrical overstress","authors":"Tong Li, C. Tsai, S. Kang","doi":"10.1145/288548.288553","DOIUrl":null,"url":null,"abstract":"Accurate simulation of transient device thermal behavior is essential to predict CMOS VLSI circuit failures under electrical overstress (EOS). In this paper, we present an efficient transient electrothermal simulator that is built upon a SPICE-like engine. The transient device temperature is estimated by the convolution of the device power dissipation and its thermal impulse response which can be derived an analytical solution of the heat diffusion equation. New fast thermal simulation techniques are proposed including a regionwise-exponential (RWE) approximation of thermal impulse response and recursive convolution scheme. The recursive convolution provides a significant performance improvement over the numerical convolution by orders of magnitude, making it computationally feasible to simulate CMOS circuits with many devices.","PeriodicalId":90518,"journal":{"name":"ICCAD. IEEE/ACM International Conference on Computer-Aided Design","volume":"5 1","pages":"6-11"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICCAD. IEEE/ACM International Conference on Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/288548.288553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Accurate simulation of transient device thermal behavior is essential to predict CMOS VLSI circuit failures under electrical overstress (EOS). In this paper, we present an efficient transient electrothermal simulator that is built upon a SPICE-like engine. The transient device temperature is estimated by the convolution of the device power dissipation and its thermal impulse response which can be derived an analytical solution of the heat diffusion equation. New fast thermal simulation techniques are proposed including a regionwise-exponential (RWE) approximation of thermal impulse response and recursive convolution scheme. The recursive convolution provides a significant performance improvement over the numerical convolution by orders of magnitude, making it computationally feasible to simulate CMOS circuits with many devices.