Numerical treatment of Gray-Scott model with operator splitting method

Berat Karaagac
{"title":"Numerical treatment of Gray-Scott model with operator splitting method","authors":"Berat Karaagac","doi":"10.3934/dcdss.2020143","DOIUrl":null,"url":null,"abstract":"This article focuses on the numerical solution of a classical, irreversible Gray Scott reaction-diffusion system describing the kinetics of a simple autocatalytic reaction in an unstirred ow reactor. A novel finite element numerical scheme based on B-spline collocation method is developed to solve this model. Before applying finite element method, ``strang splitting'' idea especially popularized for reaction-diffusion PDEs has been applied to the model. Then, using the underlying idea behind finite element approximation, the domain of integration is partitioned into subintervals which is sought as the basis for the B-spline approximate solution. Thus, the partial derivatives are transformed into a system of algebraic equations. Applicability and accuracy of this method is justified via comparison with the exact solution and calculating both the error norms \\begin{document}$ L_2 $\\end{document} and \\begin{document}$ L_\\infty $\\end{document} . Numerical results arising from the simulation experiments are also presented.","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"12 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcdss.2020143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This article focuses on the numerical solution of a classical, irreversible Gray Scott reaction-diffusion system describing the kinetics of a simple autocatalytic reaction in an unstirred ow reactor. A novel finite element numerical scheme based on B-spline collocation method is developed to solve this model. Before applying finite element method, ``strang splitting'' idea especially popularized for reaction-diffusion PDEs has been applied to the model. Then, using the underlying idea behind finite element approximation, the domain of integration is partitioned into subintervals which is sought as the basis for the B-spline approximate solution. Thus, the partial derivatives are transformed into a system of algebraic equations. Applicability and accuracy of this method is justified via comparison with the exact solution and calculating both the error norms \begin{document}$ L_2 $\end{document} and \begin{document}$ L_\infty $\end{document} . Numerical results arising from the simulation experiments are also presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
算子分裂法对Gray-Scott模型的数值处理
This article focuses on the numerical solution of a classical, irreversible Gray Scott reaction-diffusion system describing the kinetics of a simple autocatalytic reaction in an unstirred ow reactor. A novel finite element numerical scheme based on B-spline collocation method is developed to solve this model. Before applying finite element method, ``strang splitting'' idea especially popularized for reaction-diffusion PDEs has been applied to the model. Then, using the underlying idea behind finite element approximation, the domain of integration is partitioned into subintervals which is sought as the basis for the B-spline approximate solution. Thus, the partial derivatives are transformed into a system of algebraic equations. Applicability and accuracy of this method is justified via comparison with the exact solution and calculating both the error norms \begin{document}$ L_2 $\end{document} and \begin{document}$ L_\infty $\end{document} . Numerical results arising from the simulation experiments are also presented.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On some model problem for the propagation of interacting species in a special environment On the Cahn-Hilliard-Darcy system with mass source and strongly separating potential Stochastic local volatility models and the Wei-Norman factorization method Robust $ H_\infty $ resilient event-triggered control design for T-S fuzzy systems Robust adaptive sliding mode tracking control for a rigid body based on Lie subgroups of SO(3)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1