New Shrinkage Entropy Estimator for Mean of Exponential Distribution under Different Loss Functions

Priyanka Sahni, Raj Kumar
{"title":"New Shrinkage Entropy Estimator for Mean of Exponential Distribution under Different Loss Functions","authors":"Priyanka Sahni, Raj Kumar","doi":"10.26713/cma.v14i1.1912","DOIUrl":null,"url":null,"abstract":". In this paper, a new shrinkage estimator of entropy function for mean of an exponential distribution is proposed. A progressive type censored sample is taken to obtain the estimator. For the new estimator, risk functions and relative risk functions are developed under symmetric and asymmetric loss functions, viz. squared error loss function and LINEX loss function, and new estimator is shown to have better performance than a classical estimator in terms of relative risk","PeriodicalId":43490,"journal":{"name":"Communications in Mathematics and Applications","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26713/cma.v14i1.1912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

. In this paper, a new shrinkage estimator of entropy function for mean of an exponential distribution is proposed. A progressive type censored sample is taken to obtain the estimator. For the new estimator, risk functions and relative risk functions are developed under symmetric and asymmetric loss functions, viz. squared error loss function and LINEX loss function, and new estimator is shown to have better performance than a classical estimator in terms of relative risk
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同损失函数下指数分布均值的新收缩熵估计
。本文提出了一种新的指数分布均值熵函数的收缩估计。采用递进式截尾样本来获得估计量。对于新估计量,分别在对称损失函数和非对称损失函数下,即误差平方损失函数和LINEX损失函数下,建立了风险函数和相对风险函数,并证明了新估计量在相对风险方面比经典估计量有更好的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
53
期刊最新文献
Performance Improvement in Speech Based Emotion Recognition With DWT and ANOVA A Simple Mathematical Model for Covid-19: Case Study of Goa Role of Glucose and Oxygen Concentration on Tumor Cell: A Mathematical Model New Method of Cryptography With Python Code Using Elzaki Transform and Linear Combination of Function Semi Analytic-Numerical Solution of Imbibition Phenomenon in Homogeneous Porous Medium Using Hybrid Differential Transform Finite Difference Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1