{"title":"Conditional density estimation using population Monte Carlo based approximate Bayesian computation","authors":"Faiza Afzaal, Dr. Maryam Ilyas","doi":"10.15672/hujms.1055050","DOIUrl":null,"url":null,"abstract":"Most statistical methods require likelihood evaluation to draw a statistical inference. However, in some situations, likelihood evaluation becomes difficult analytically or computationally. Different likelihood-free methods are available that eliminate the need to compute the likelihood function. Approximate Bayesian Computation (ABC) is a framework that implements likelihood-free inference and replaces the likelihood evaluation with simulations by using forward modeling. The goal of ABC methods is to approximate the posterior distribution. However, posterior approximation via ABC methods is still considerably expensive for high dimensions. ABC requires many simulations that become computationally infeasible for complex models. Here, a technique is proposed that combines a somewhat more efficient form of ABC (Population Monte Carlo, PMC) with a Conditional Density Estimation (CDE) approach. The proposed framework provides an estimation of the posterior distribution which is referred to as PMC-CDE. A simulation study is performed that provides empirical evidence to show the efficiency of PMC-CDE in terms of integrated squared error loss. Furthermore, real-life datasets manifest the application of the proposed method.","PeriodicalId":55078,"journal":{"name":"Hacettepe Journal of Mathematics and Statistics","volume":"57 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hacettepe Journal of Mathematics and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15672/hujms.1055050","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Most statistical methods require likelihood evaluation to draw a statistical inference. However, in some situations, likelihood evaluation becomes difficult analytically or computationally. Different likelihood-free methods are available that eliminate the need to compute the likelihood function. Approximate Bayesian Computation (ABC) is a framework that implements likelihood-free inference and replaces the likelihood evaluation with simulations by using forward modeling. The goal of ABC methods is to approximate the posterior distribution. However, posterior approximation via ABC methods is still considerably expensive for high dimensions. ABC requires many simulations that become computationally infeasible for complex models. Here, a technique is proposed that combines a somewhat more efficient form of ABC (Population Monte Carlo, PMC) with a Conditional Density Estimation (CDE) approach. The proposed framework provides an estimation of the posterior distribution which is referred to as PMC-CDE. A simulation study is performed that provides empirical evidence to show the efficiency of PMC-CDE in terms of integrated squared error loss. Furthermore, real-life datasets manifest the application of the proposed method.
期刊介绍:
Hacettepe Journal of Mathematics and Statistics covers all aspects of Mathematics and Statistics. Papers on the interface between Mathematics and Statistics are particularly welcome, including applications to Physics, Actuarial Sciences, Finance and Economics.
We strongly encourage submissions for Statistics Section including current and important real world examples across a wide range of disciplines. Papers have innovations of statistical methodology are highly welcome. Purely theoretical papers may be considered only if they include popular real world applications.