A Review of High-Efficient Synthetic Methods for Zeolite Membranes and Challenges of Their Directional Growth Control

IF 3.8 3区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Comments on Inorganic Chemistry Pub Date : 2022-11-01 DOI:10.1080/02603594.2022.2138864
Dingcheng Liang, Ruicong Zhang, Yuan Liu, Q. Xie, Jinchang Liu
{"title":"A Review of High-Efficient Synthetic Methods for Zeolite Membranes and Challenges of Their Directional Growth Control","authors":"Dingcheng Liang, Ruicong Zhang, Yuan Liu, Q. Xie, Jinchang Liu","doi":"10.1080/02603594.2022.2138864","DOIUrl":null,"url":null,"abstract":"ABSTRACT Zeolite membranes are widely used in separation, catalysis, sensors and other fields because of their good diffusion performance, shape selection and catalysis capabilities. However, the slow synthesis rate of zeolite membranes restricts their industrialization process, and the random orientation seriously affects their performance. Therefore, this paper investigates the methods for accelerating the synthesis rate of zeolites and the roles of different methods was explored. The synthesis conditions of oriented zeolite membranes are also summarized. Microwave method can efficiently synthesize oriented zeolite membranes, but it has the defects of harsh synthesis conditions and high equipment requirements. Using physical methods and chemical methods to introduce hydroxyl radicals, which is also an effective method to improve the synthesis rate of zeolites. However, there is a lack of research on how to realize the directional synthesis of zeolite membranes during this process. Synthesis conditions, template and support properties affect the directional synthesis of zeolite membranes. Therefore, while introducing free radicals, adjusting the composition of the synthetic solution or introducing inhibitors that affect the growth direction of zeolite in the synthetic system can realize the efficient directional synthesis of zeolite membrane, which is another potential method to promote the industrialization of directional zeolite membrane besides microwave method. Graphical Abstract","PeriodicalId":10481,"journal":{"name":"Comments on Inorganic Chemistry","volume":"13 1","pages":"305 - 356"},"PeriodicalIF":3.8000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comments on Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/02603594.2022.2138864","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT Zeolite membranes are widely used in separation, catalysis, sensors and other fields because of their good diffusion performance, shape selection and catalysis capabilities. However, the slow synthesis rate of zeolite membranes restricts their industrialization process, and the random orientation seriously affects their performance. Therefore, this paper investigates the methods for accelerating the synthesis rate of zeolites and the roles of different methods was explored. The synthesis conditions of oriented zeolite membranes are also summarized. Microwave method can efficiently synthesize oriented zeolite membranes, but it has the defects of harsh synthesis conditions and high equipment requirements. Using physical methods and chemical methods to introduce hydroxyl radicals, which is also an effective method to improve the synthesis rate of zeolites. However, there is a lack of research on how to realize the directional synthesis of zeolite membranes during this process. Synthesis conditions, template and support properties affect the directional synthesis of zeolite membranes. Therefore, while introducing free radicals, adjusting the composition of the synthetic solution or introducing inhibitors that affect the growth direction of zeolite in the synthetic system can realize the efficient directional synthesis of zeolite membrane, which is another potential method to promote the industrialization of directional zeolite membrane besides microwave method. Graphical Abstract
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
沸石膜的高效合成方法及其定向生长控制的挑战
沸石膜因其良好的扩散性能、形状选择和催化能力,广泛应用于分离、催化、传感器等领域。但沸石膜合成速度慢制约了其工业化进程,且取向的随机性严重影响了其性能。因此,本文研究了加快沸石合成速度的方法,并探讨了不同方法的作用。综述了定向沸石膜的合成条件。微波法可以高效地合成定向沸石膜,但存在合成条件苛刻、设备要求高的缺陷。采用物理方法和化学方法引入羟基自由基,也是提高沸石合成速率的有效方法。然而,在此过程中如何实现沸石膜的定向合成还缺乏研究。分子筛膜的定向合成受合成条件、模板和载体性能的影响。因此,在引入自由基的同时,调整合成溶液的组成或在合成体系中引入影响沸石生长方向的抑制剂,可实现沸石膜的高效定向合成,是除微波法外,促进定向沸石膜产业化的另一种有潜力的方法。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Comments on Inorganic Chemistry
Comments on Inorganic Chemistry 化学-无机化学与核化学
CiteScore
9.00
自引率
1.90%
发文量
18
审稿时长
>12 weeks
期刊介绍: Comments on Inorganic Chemistry is intended as a vehicle for authoritatively written critical discussions of inorganic chemistry research. We publish focused articles of any length that critique or comment upon new concepts, or which introduce new interpretations or developments of long-standing concepts. “Comments” may contain critical discussions of previously published work, or original research that critiques existing concepts or introduces novel concepts. Through the medium of “comments,” the Editors encourage authors in any area of inorganic chemistry - synthesis, structure, spectroscopy, kinetics and mechanisms, theory - to write about their interests in a manner that is both personal and pedagogical. Comments is an excellent platform for younger inorganic chemists whose research is not yet widely known to describe their work, and add to the spectrum of Comments’ author profiles, which includes many well-established inorganic chemists.
期刊最新文献
Chemosensing Applications of Thiophene Derivatives and Anticancer Potential of Their Platinum-Group Metal Complexes: A Review Recent Progress on Core-Shell Zeolitic Imidazole Frameworks: A Review of Synthesis and Applications Recent Advances in O-, N- and S- Donor Ligands As Chemosensors for the Detection of Cr(III) and Cr(VI). Ions: A Comprehensive Review (2018-2024) Direct and mediator-based Z-scheme heterojunctions involving bi2moo6 for abatement of dyes and pharmaceuticals Application of Inorganic Nanomaterials in Transdermal and Topical Medications: Influential Parameters, Opportunities and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1