{"title":"A process oriented semantics of the PRAM-language FORK","authors":"Gudula Rünger, Kurt Sieber","doi":"10.1016/0096-0551(94)90007-8","DOIUrl":null,"url":null,"abstract":"<div><p>The parallel language FORK [1], based on a scalable shared memory model, is a PASCAL-like language with some additional parallel constructs. A PRAM (Parallel Random Access Machine) algorithm can be expressed on a high level of abstraction as a FORK program which is translated into efficient PRAM code guaranteeing theoretically predicted runtimes.</p><p>In this paper, we concentrate on those features of the language FORK related to parallelism, such as the group concept, a shared memory access and synchronous or asynchronous execution. We present a trace-based denotational interleaving semantics where processes describe synchronous computations. Processes are created or deleted dynamically and run asynchronously. Interleaving rules reflect the underlying CRCW (concurrent-read-concurrent-write) PRAM model.</p></div>","PeriodicalId":100315,"journal":{"name":"Computer Languages","volume":"20 4","pages":"Pages 253-265"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0096-0551(94)90007-8","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Languages","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0096055194900078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The parallel language FORK [1], based on a scalable shared memory model, is a PASCAL-like language with some additional parallel constructs. A PRAM (Parallel Random Access Machine) algorithm can be expressed on a high level of abstraction as a FORK program which is translated into efficient PRAM code guaranteeing theoretically predicted runtimes.
In this paper, we concentrate on those features of the language FORK related to parallelism, such as the group concept, a shared memory access and synchronous or asynchronous execution. We present a trace-based denotational interleaving semantics where processes describe synchronous computations. Processes are created or deleted dynamically and run asynchronously. Interleaving rules reflect the underlying CRCW (concurrent-read-concurrent-write) PRAM model.