Detection of integron genes in the plasmid DNA of multidrug resistant Pseudomonas aeruginosa isolated from surgical wounds of some patients in Benin City, Nigeria
A. Eremwanarue, H. Shittu, E. Igiehon, E. R. Oijagbe
{"title":"Detection of integron genes in the plasmid DNA of multidrug resistant Pseudomonas aeruginosa isolated from surgical wounds of some patients in Benin City, Nigeria","authors":"A. Eremwanarue, H. Shittu, E. Igiehon, E. R. Oijagbe","doi":"10.4314/NJB.V37I2.9","DOIUrl":null,"url":null,"abstract":"Pseudomonas aeruginosa is an opportunistic pathogen with the capability to cause serious surgical wound infections and remains a major healthcare problem. Plasmid is an extra chromosomal material in bacterial cells and confers resistance to the cell against many antibiotics. Genetic elements such as integron are implicated in conferring multidrug resistance (MDR) to P. aeruginosa . This study aims at investigating the occurrence of integron genes (int1, int2, int3) in the plasmid DNA and their ability to cause MDR in P. aeruginosa . In total, 284 different wound swabs were collected, P. aeruginosa isolated and screened using standard laboratory methods. Antibiotics susceptibility tests were carried out using Kirby-Bauer disk diffusion method. Polymerase chain reaction (PCR) was also carried out using P. aeruginosa plasmid DNA as a template to detect the presence/absence of the integron genes using different pairs of specific primers. The results reveal that 34 (54.8%) of the microbes isolated were P. aeruginosa . Most of the isolates showed notable resistance to antibiotics, most notably against Ceftazidime, Augmentin, Cefixime and Gentamicin . Eleven isolates harbors the plasmid DNA . PCR amplification showed that 6 (54.5%) of the P. aeruginosa isolates harbor integron class 1 genes, non harbors the integron class 2 genes while 3 (27.3%) possess the integron class 3 genes. The isolates with these genes were highly resistant to most of the antibiotics used. int1 gene was prevalent then int3.","PeriodicalId":19168,"journal":{"name":"Nigerian Journal of Biotechnology","volume":"72 1","pages":"95-102"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nigerian Journal of Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/NJB.V37I2.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen with the capability to cause serious surgical wound infections and remains a major healthcare problem. Plasmid is an extra chromosomal material in bacterial cells and confers resistance to the cell against many antibiotics. Genetic elements such as integron are implicated in conferring multidrug resistance (MDR) to P. aeruginosa . This study aims at investigating the occurrence of integron genes (int1, int2, int3) in the plasmid DNA and their ability to cause MDR in P. aeruginosa . In total, 284 different wound swabs were collected, P. aeruginosa isolated and screened using standard laboratory methods. Antibiotics susceptibility tests were carried out using Kirby-Bauer disk diffusion method. Polymerase chain reaction (PCR) was also carried out using P. aeruginosa plasmid DNA as a template to detect the presence/absence of the integron genes using different pairs of specific primers. The results reveal that 34 (54.8%) of the microbes isolated were P. aeruginosa . Most of the isolates showed notable resistance to antibiotics, most notably against Ceftazidime, Augmentin, Cefixime and Gentamicin . Eleven isolates harbors the plasmid DNA . PCR amplification showed that 6 (54.5%) of the P. aeruginosa isolates harbor integron class 1 genes, non harbors the integron class 2 genes while 3 (27.3%) possess the integron class 3 genes. The isolates with these genes were highly resistant to most of the antibiotics used. int1 gene was prevalent then int3.