Classification of Children's Heart Sounds With Noise Reduction Based on Variational Modal Decomposition

IF 2.7 Q3 ENGINEERING, BIOMEDICAL Frontiers in medical technology Pub Date : 2022-05-26 DOI:10.3389/fmedt.2022.854382
Anqi Zhang, Jiaming Wang, Fei Qu, Zhaoming He
{"title":"Classification of Children's Heart Sounds With Noise Reduction Based on Variational Modal Decomposition","authors":"Anqi Zhang, Jiaming Wang, Fei Qu, Zhaoming He","doi":"10.3389/fmedt.2022.854382","DOIUrl":null,"url":null,"abstract":"Purpose Children's heart sounds were denoised to improve the performance of the intelligent diagnosis. Methods A combined noise reduction method based on variational modal decomposition (VMD) and wavelet soft threshold algorithm (WST) was proposed, and used to denoise 103 phonocardiogram samples. Features were extracted after denoising and employed for an intelligent diagnosis model to verify the effect of the denoising method. Results The noise in children's phonocardiograms, especially crying noise, was suppressed. The signal-to-noise ratio obtained by the method for normal heart sounds was 14.69 dB at 5 dB Gaussian noise, which was higher than that obtained by WST only and the other VMD denoising method. Intelligent classification showed that the accuracy, sensitivity and specificity of the classification system for congenital heart diseases were 92.23, 92.42, and 91.89%, respectively and better than those with WST only. Conclusion The proposed noise reduction method effectively eliminates noise in children's phonocardiograms and improves the performance of intelligent screening for the children with congenital heart diseases.","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":"1 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in medical technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fmedt.2022.854382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 3

Abstract

Purpose Children's heart sounds were denoised to improve the performance of the intelligent diagnosis. Methods A combined noise reduction method based on variational modal decomposition (VMD) and wavelet soft threshold algorithm (WST) was proposed, and used to denoise 103 phonocardiogram samples. Features were extracted after denoising and employed for an intelligent diagnosis model to verify the effect of the denoising method. Results The noise in children's phonocardiograms, especially crying noise, was suppressed. The signal-to-noise ratio obtained by the method for normal heart sounds was 14.69 dB at 5 dB Gaussian noise, which was higher than that obtained by WST only and the other VMD denoising method. Intelligent classification showed that the accuracy, sensitivity and specificity of the classification system for congenital heart diseases were 92.23, 92.42, and 91.89%, respectively and better than those with WST only. Conclusion The proposed noise reduction method effectively eliminates noise in children's phonocardiograms and improves the performance of intelligent screening for the children with congenital heart diseases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于变分模态分解的儿童心音降噪分类
目的对儿童心音进行降噪处理,提高智能诊断的效果。方法提出一种基于变分模态分解(VMD)和小波软阈值算法(WST)的组合降噪方法,并对103份心音图样本进行降噪处理。去噪后提取特征,并用于智能诊断模型,验证去噪方法的效果。结果患儿心音图噪声,尤其是哭闹噪声均得到抑制。在5 dB高斯噪声下,该方法获得的正常心音信噪比为14.69 dB,高于单纯WST和其他VMD去噪方法。智能分类表明,该分类系统对先天性心脏病的准确率、灵敏度和特异性分别为92.23%、92.42%和91.89%,均优于单纯WST分类。结论所提出的降噪方法有效地消除了儿童心音图中的噪声,提高了先天性心脏病儿童智能筛查的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Open-loop narrowband magnetic particle imaging based on mixed-frequency harmonic magnetization response. A prototype photoplethysmography-based cuffless device shows promising results in tracking changes in blood pressure. Motion artifact variability in biomagnetic wearable devices. Advancements in sarcopenia diagnosis: from imaging techniques to non-radiation assessments. Towards non-invasive imaging through spinal-cord generated magnetic fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1