A novel Methylomirabilota methanotroph potentially couples methane oxidation to iodate reduction.

IF 4.5 Q1 MICROBIOLOGY mLife Pub Date : 2022-08-09 eCollection Date: 2022-09-01 DOI:10.1002/mlf2.12033
Baoli Zhu, Clemens Karwautz, Stefan Andrei, Andreas Klingl, Jakob Pernthaler, Tillmann Lueders
{"title":"A novel <i>Methylomirabilota</i> methanotroph potentially couples methane oxidation to iodate reduction.","authors":"Baoli Zhu, Clemens Karwautz, Stefan Andrei, Andreas Klingl, Jakob Pernthaler, Tillmann Lueders","doi":"10.1002/mlf2.12033","DOIUrl":null,"url":null,"abstract":"<p><p>Methane oxidizing microbes play a key role in reducing the emission of this potent greenhouse gas to the atmosphere. The known versatility of the recently discovered anaerobic <i>Methylomirabilota</i> methanotrophs is limited. Here, we report a novel uncultured <i>Methylomirabilis</i> species, <i>Candidatus Methylomirabilis iodofontis</i>, with the genetic potential of iodate respiration from biofilm in iodine-rich cavern spring water. Star-like cells resembling <i>Methylomirabilis oxyfera</i> were directly observed from the biofilm and a high-quality metagenome-assembled genome (MAG) of <i>Ca</i>. <i>M. iodofontis</i> was assembled. In addition to oxygenic denitrification and aerobic methane oxidation pathways, the <i>M. iodofontis</i> MAG also indicated its iodate-reducing potential, a capability that would enable the bacterium to use iodate other than nitrite as an electron acceptor, a hitherto unrecognized metabolic potential of <i>Methylomirabilota</i> methanotrophs. The results advance the current understanding of the ecophysiology of anaerobic <i>Methylomirabilota</i> methanotrophs and may suggest an additional methane sink, especially in iodate-rich ecosystems.</p>","PeriodicalId":94145,"journal":{"name":"mLife","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10989891/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mLife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mlf2.12033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Methane oxidizing microbes play a key role in reducing the emission of this potent greenhouse gas to the atmosphere. The known versatility of the recently discovered anaerobic Methylomirabilota methanotrophs is limited. Here, we report a novel uncultured Methylomirabilis species, Candidatus Methylomirabilis iodofontis, with the genetic potential of iodate respiration from biofilm in iodine-rich cavern spring water. Star-like cells resembling Methylomirabilis oxyfera were directly observed from the biofilm and a high-quality metagenome-assembled genome (MAG) of Ca. M. iodofontis was assembled. In addition to oxygenic denitrification and aerobic methane oxidation pathways, the M. iodofontis MAG also indicated its iodate-reducing potential, a capability that would enable the bacterium to use iodate other than nitrite as an electron acceptor, a hitherto unrecognized metabolic potential of Methylomirabilota methanotrophs. The results advance the current understanding of the ecophysiology of anaerobic Methylomirabilota methanotrophs and may suggest an additional methane sink, especially in iodate-rich ecosystems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新型甲烷养甲虫有可能将甲烷氧化与碘酸盐还原结合起来。
甲烷氧化微生物在减少这种强效温室气体向大气排放方面发挥着关键作用。最近发现的厌氧型甲烷滋养微生物的多功能性是有限的。在这里,我们报告了一种新的未培养的甲氧甲烷菌--Candidatus Methylomirabilis iodofontis,它具有从富含碘的岩洞泉水生物膜中进行碘酸盐呼吸的遗传潜力。从生物膜中直接观察到了类似于Methylomirabilis oxyfera的星状细胞,并获得了Ca.M. iodofontis的高质量元基因组(MAG)。M. iodofontis 的高质量元基因组(MAG)。除了含氧反硝化和需氧甲烷氧化途径外,M. iodofontis 的 MAG 还显示了其碘酸盐还原潜力,这种能力使该细菌能够使用亚硝酸盐以外的碘酸盐作为电子受体,这是迄今为止尚未认识到的 Methylomirabilota 甲烷营养菌的代谢潜力。这些结果加深了人们目前对厌氧甲烷菌生态生理学的了解,并可能为甲烷的吸收提供了新的途径,尤其是在富含碘酸盐的生态系统中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
期刊最新文献
Staphylococcus aureus SOS response: Activation, impact, and drug targets. EmbB and EmbC regulate the sensitivity of Mycobacterium abscessus to echinomycin. Metabolic activities of marine ammonia-oxidizing archaea orchestrated by quorum sensing. Zinc finger 4 negatively controls the transcriptional activator Fzf1 in Saccharomyces cerevisiae. Efficient, compact, and versatile: Type I-F2 CRISPR-Cas system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1