Yao Huai, Yuhui Wang, Shubo Wang, Yi Xiong, M. Huttula, Wei Cao
{"title":"Effects of supersonic fine particle bombardment on the microstructure and properties of an Mg-1.8Zn-0.5Zr-1.5Gd biological magnesium alloy","authors":"Yao Huai, Yuhui Wang, Shubo Wang, Yi Xiong, M. Huttula, Wei Cao","doi":"10.31577/km.2023.5.321","DOIUrl":null,"url":null,"abstract":"With the help of supersonic fine particle bombardment technology, a gradient nanostructure with a certain layer depth was constructed on the surface of an Mg-1.8Zn-0.5Zr-1.5Gd biological magnesium alloy. The effects of bombardment time on the microstructure, mechanical properties, and corrosion resistance of the gradient nanostructure were investigated. The results showed that the layer depth and surface roughness of the gradient nanostructures increased with an increase in the bombardment time, and the corresponding mechanical properties and corrosion resistance first increased and then decreased with an extension of the bombardment time. When the bombardment time was 30 s, the alloy had good mechanical properties and corrosion resistance. Its tensile strength, yield strength, elongation, and static corrosion rate were 299.1 ± 2.2 MPa, 264.4 ± 1.5 MPa, 36.8 ± 1.3 %, and 0.307 ± 0.015 mm y − 1 , respectively. The results of the 120-h immersion experiment in simulated human body fluids showed that the average corrosion rate of the alloy first decreased, then increased, and finally decreased with an extension of the immersion time and finally tended","PeriodicalId":49937,"journal":{"name":"Kovove Materialy-Metallic Materials","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kovove Materialy-Metallic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.31577/km.2023.5.321","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the help of supersonic fine particle bombardment technology, a gradient nanostructure with a certain layer depth was constructed on the surface of an Mg-1.8Zn-0.5Zr-1.5Gd biological magnesium alloy. The effects of bombardment time on the microstructure, mechanical properties, and corrosion resistance of the gradient nanostructure were investigated. The results showed that the layer depth and surface roughness of the gradient nanostructures increased with an increase in the bombardment time, and the corresponding mechanical properties and corrosion resistance first increased and then decreased with an extension of the bombardment time. When the bombardment time was 30 s, the alloy had good mechanical properties and corrosion resistance. Its tensile strength, yield strength, elongation, and static corrosion rate were 299.1 ± 2.2 MPa, 264.4 ± 1.5 MPa, 36.8 ± 1.3 %, and 0.307 ± 0.015 mm y − 1 , respectively. The results of the 120-h immersion experiment in simulated human body fluids showed that the average corrosion rate of the alloy first decreased, then increased, and finally decreased with an extension of the immersion time and finally tended
期刊介绍:
Kovove Materialy - Metallic Materials is dedicated to publishing original theoretical and experimental papers concerned with structural, nanostructured, and functional metallic and selected non-metallic materials. Emphasis is placed on those aspects of the science of materials that address:
the relationship between the microstructure of materials and their properties, including mechanical, electrical, magnetic and chemical properties;
the relationship between the microstructure of materials and the thermodynamics, kinetics and mechanisms of processes;
the synthesis and processing of materials, with emphasis on microstructural mechanisms and control;
advances in the characterization of the microstructure and properties of materials with experiments and models which help in understanding the properties of materials.