{"title":"NUMERICAL SIMULATION OF OSCILLATIONS OF A PLATE IN RESTING FLUID","authors":"Irina Negrozova, O. Goryachevsky","doi":"10.22337/2587-9618-2023-19-1-124-134","DOIUrl":null,"url":null,"abstract":"This paper presents a numerical solution of the problem of oscillations of a flexible plate placed in a viscous incompressible fluid done with ANSYS. In constructing a finite element model of the plate, both volumetric and shell finite elements, which are more commonly used in engineering applications, are considered. By way of example it is shown that it is possible to transition from a volumetric mesh to a shell mesh without loss of accuracy in solving this problem and similar problems. The considered coupled approach to solving the problem for the shell plate mesh has an important practical application in solving real-world problems of aeroelasticity, because in engineering practice it is much more convenient to represent structures and constructions in the form of beam and shell models. The solution of this problem is of particular importance for the verification of techniques of numerical modelling of coupled aeroelasticity problems.","PeriodicalId":36116,"journal":{"name":"International Journal for Computational Civil and Structural Engineering","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Computational Civil and Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22337/2587-9618-2023-19-1-124-134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a numerical solution of the problem of oscillations of a flexible plate placed in a viscous incompressible fluid done with ANSYS. In constructing a finite element model of the plate, both volumetric and shell finite elements, which are more commonly used in engineering applications, are considered. By way of example it is shown that it is possible to transition from a volumetric mesh to a shell mesh without loss of accuracy in solving this problem and similar problems. The considered coupled approach to solving the problem for the shell plate mesh has an important practical application in solving real-world problems of aeroelasticity, because in engineering practice it is much more convenient to represent structures and constructions in the form of beam and shell models. The solution of this problem is of particular importance for the verification of techniques of numerical modelling of coupled aeroelasticity problems.