{"title":"StarDriver: Recent Results on Beam Smoothing and 2Ïpe Mitigation","authors":"E. D.","doi":"10.4172/2469-410X.1000130","DOIUrl":null,"url":null,"abstract":"StarDriver was recently proposed as a highly flexible laser driver for inertial confinement fusion and high energy density physics. It envisions a laser drive consisting of very many beams at an aperture and energy where the optical technology is well-developed, used in concert to create a large scale laser driver system. In this paper we describe a StarDriver–class laser with 5120 physical beamlets disposed about the target chamber in 80 evenly spaced ports, each port containing 64 beamlets, each beamlet having about ~1.5 THz of 2D SSD bandwidth and suitable phase plates, an aperture of ~65 mm, an energy of 80 J, and frequency-converted to ~351 nm. StarDriver has many beamlets at an aperture where optical technology is well-developed, and each beamlet has energy ~100 J in a several times diffraction limited beam. The ensemble of beamlets has frequency bandwidth 2%-10%, thereby providing significant control of both hydrodynamic and laser-plasma instabilities The drive at the target is ~400 kJ, has a well-behaved low L-mode spectrum, and smooth’s very rapidly, reaching an asymptotic smoothness of <1% in less than 1 ns. We also review recent results showing that the 2ωpe instability can be significantly reduced by 20 THz bandwidth.","PeriodicalId":92245,"journal":{"name":"Journal of lasers, optics & photonics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of lasers, optics & photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2469-410X.1000130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
StarDriver was recently proposed as a highly flexible laser driver for inertial confinement fusion and high energy density physics. It envisions a laser drive consisting of very many beams at an aperture and energy where the optical technology is well-developed, used in concert to create a large scale laser driver system. In this paper we describe a StarDriver–class laser with 5120 physical beamlets disposed about the target chamber in 80 evenly spaced ports, each port containing 64 beamlets, each beamlet having about ~1.5 THz of 2D SSD bandwidth and suitable phase plates, an aperture of ~65 mm, an energy of 80 J, and frequency-converted to ~351 nm. StarDriver has many beamlets at an aperture where optical technology is well-developed, and each beamlet has energy ~100 J in a several times diffraction limited beam. The ensemble of beamlets has frequency bandwidth 2%-10%, thereby providing significant control of both hydrodynamic and laser-plasma instabilities The drive at the target is ~400 kJ, has a well-behaved low L-mode spectrum, and smooth’s very rapidly, reaching an asymptotic smoothness of <1% in less than 1 ns. We also review recent results showing that the 2ωpe instability can be significantly reduced by 20 THz bandwidth.