Evolutionary algorithms for robust methods

Robin Nunkesser, Oliver Morell
{"title":"Evolutionary algorithms for robust methods","authors":"Robin Nunkesser, Oliver Morell","doi":"10.17877/DE290R-12759","DOIUrl":null,"url":null,"abstract":"A drawback of robust statistical techniques is the increased computational effort often needed compared to non robust methods. Robust estimators possessing the exact fit property, for example, are NP-hard to compute. This means thatunder the widely believed assumption that the computational complexity classes NP and P are not equalthere is no hope to compute exact solutions for large high dimensional data sets. To tackle this problem, search heuristics are used to compute NP-hard estimators in high dimensions. Here, an evolutionary algorithm that is applicable to different robust estimators is presented. Further, variants of this evolutionary algorithm for selected estimatorsmost prominently least trimmed squares and least median of squaresare introduced and shown to outperform existing popular search heuristics in difficult data situations. The results increase the applicability of robust methods and underline the usefulness of evolutionary computation for computational statistics.","PeriodicalId":10841,"journal":{"name":"CTIT technical reports series","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CTIT technical reports series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17877/DE290R-12759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A drawback of robust statistical techniques is the increased computational effort often needed compared to non robust methods. Robust estimators possessing the exact fit property, for example, are NP-hard to compute. This means thatunder the widely believed assumption that the computational complexity classes NP and P are not equalthere is no hope to compute exact solutions for large high dimensional data sets. To tackle this problem, search heuristics are used to compute NP-hard estimators in high dimensions. Here, an evolutionary algorithm that is applicable to different robust estimators is presented. Further, variants of this evolutionary algorithm for selected estimatorsmost prominently least trimmed squares and least median of squaresare introduced and shown to outperform existing popular search heuristics in difficult data situations. The results increase the applicability of robust methods and underline the usefulness of evolutionary computation for computational statistics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稳健方法的进化算法
稳健统计技术的一个缺点是,与非稳健方法相比,通常需要增加计算量。例如,具有精确拟合性质的鲁棒估计是np困难的。这意味着,在人们普遍认为的计算复杂度类NP和P不相等的假设下,计算大型高维数据集的精确解是没有希望的。为了解决这个问题,搜索启发式算法被用于计算高维的NP-hard估计量。本文提出了一种适用于不同鲁棒估计量的进化算法。此外,介绍了该进化算法的变体,用于选择估计器,最突出的是最小裁剪平方和最小平方中位数,并显示出在困难数据情况下优于现有流行的搜索启发式。结果增加了鲁棒方法的适用性,并强调了进化计算对计算统计的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Costs and Benefits of Electric Vehicles and District Cooling Systems: A case study in Singapore Towards a Digital Urban Climate Twin: Simulation-as-a-Service (SaaS) for Model Integration Microscale Assessment of the Anthropogenic Heat Mitigation Strategies Decision Support System: User research, usability analysis and computational build Analysis of climatic variables in different urban sites of Singapore and evaluation of strategies to improve the outdoor thermal environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1