Varun Tulsian, Aditya Kanade, Rahul Kumar, A. Lal, A. Nori
{"title":"MUX: algorithm selection for software model checkers","authors":"Varun Tulsian, Aditya Kanade, Rahul Kumar, A. Lal, A. Nori","doi":"10.1145/2597073.2597080","DOIUrl":null,"url":null,"abstract":"With the growing complexity of modern day software, software model checking has become a critical technology for ensuring correctness of software. As is true with any promising technology, there are a number of tools for software model checking. However, their respective performance trade-offs are difficult to characterize accurately – making it difficult for practitioners to select a suitable tool for the task at hand. This paper proposes a technique called MUX that addresses the problem of selecting the most suitable software model checker for a given input instance. MUX performs machine learning on a repository of software verification instances. The algorithm selector, synthesized through machine learning, uses structural features from an input instance, comprising a program-property pair, at runtime and determines which tool to use. \n We have implemented MUX for Windows device drivers and evaluated it on a number of drivers and model checkers. Our results are promising in that the algorithm selector not only avoids a significant number of timeouts but also improves the total runtime by a large margin, compared to any individual model checker. It also outperforms a portfolio-based algorithm selector being used in Microsoft at present. Besides, MUX identifies structural features of programs that are key factors in determining performance of model checkers.","PeriodicalId":6621,"journal":{"name":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","volume":"27 1","pages":"132-141"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2597073.2597080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
With the growing complexity of modern day software, software model checking has become a critical technology for ensuring correctness of software. As is true with any promising technology, there are a number of tools for software model checking. However, their respective performance trade-offs are difficult to characterize accurately – making it difficult for practitioners to select a suitable tool for the task at hand. This paper proposes a technique called MUX that addresses the problem of selecting the most suitable software model checker for a given input instance. MUX performs machine learning on a repository of software verification instances. The algorithm selector, synthesized through machine learning, uses structural features from an input instance, comprising a program-property pair, at runtime and determines which tool to use.
We have implemented MUX for Windows device drivers and evaluated it on a number of drivers and model checkers. Our results are promising in that the algorithm selector not only avoids a significant number of timeouts but also improves the total runtime by a large margin, compared to any individual model checker. It also outperforms a portfolio-based algorithm selector being used in Microsoft at present. Besides, MUX identifies structural features of programs that are key factors in determining performance of model checkers.