Preparation of Silicon Nanowires Photocathode for Photoelectrochemical Water Splitting

Zainab K. Ali, Mazin A. Mahdi
{"title":"Preparation of Silicon Nanowires Photocathode for Photoelectrochemical Water Splitting","authors":"Zainab K. Ali, Mazin A. Mahdi","doi":"10.30723/ijp.v20i4.1070","DOIUrl":null,"url":null,"abstract":"A metal-assisted chemical etching process employing p-type silicon wafers with varied etching durations is used to produce silicon nanowires. Silver nanoparticles prepared by chemical deposition are utilized as a catalyst in the formation of silicon nanowires. Images from field emission scanning electron microscopy confirmed that the diameter of SiNWs grows when the etching duration is increased. The photoelectrochemical cell's characteristics were investigated using p-type silicon nanowires as working electrodes. Linear sweep voltammetry (J-V) measurements on p-SiNWs confirmed that photocurrent density rose from 0.20 mA cm-2 to 0.92 mA cm-2 as the etching duration of prepared SiNWs increased from 15 to 30 min. The conversion efficiency (ƞ) was 0.47 for p-SiNWs prepared with a 15-minute etching time and 0.75 for p-SiNWs prepared with a 30-minute etching time. The cyclic voltammetry (CV) experiments performed at various scan rates validated the faradic behavior of p-SiNWS prepared for 15 and 30 min of etching. Because of the slow ion diffusion and the increased scanning rate, the capacitance decreased with increasing scanning rate. Mott-Schottky (M-S) investigation showed a significant carriers concentration of 3.66×1020 cm-3. According to the results of electrochemical impedance spectroscopy (EIS), the SiNWs photocathode prepared by etching for 30 min had a charge transfer resistance of 25.27 Ω, which is low enough to enhance interfacial charge transfer.","PeriodicalId":14653,"journal":{"name":"Iraqi Journal of Physics (IJP)","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal of Physics (IJP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30723/ijp.v20i4.1070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A metal-assisted chemical etching process employing p-type silicon wafers with varied etching durations is used to produce silicon nanowires. Silver nanoparticles prepared by chemical deposition are utilized as a catalyst in the formation of silicon nanowires. Images from field emission scanning electron microscopy confirmed that the diameter of SiNWs grows when the etching duration is increased. The photoelectrochemical cell's characteristics were investigated using p-type silicon nanowires as working electrodes. Linear sweep voltammetry (J-V) measurements on p-SiNWs confirmed that photocurrent density rose from 0.20 mA cm-2 to 0.92 mA cm-2 as the etching duration of prepared SiNWs increased from 15 to 30 min. The conversion efficiency (ƞ) was 0.47 for p-SiNWs prepared with a 15-minute etching time and 0.75 for p-SiNWs prepared with a 30-minute etching time. The cyclic voltammetry (CV) experiments performed at various scan rates validated the faradic behavior of p-SiNWS prepared for 15 and 30 min of etching. Because of the slow ion diffusion and the increased scanning rate, the capacitance decreased with increasing scanning rate. Mott-Schottky (M-S) investigation showed a significant carriers concentration of 3.66×1020 cm-3. According to the results of electrochemical impedance spectroscopy (EIS), the SiNWs photocathode prepared by etching for 30 min had a charge transfer resistance of 25.27 Ω, which is low enough to enhance interfacial charge transfer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光电化学水分解用硅纳米线光电阴极的制备
采用金属辅助化学蚀刻工艺,采用不同蚀刻时间的p型硅片制备硅纳米线。利用化学沉积法制备的银纳米粒子作为硅纳米线形成的催化剂。场发射扫描电镜图像证实,随着刻蚀时间的延长,SiNWs的直径增大。以p型硅纳米线为工作电极,研究了该光化学电池的性能。线性扫描伏安法(J-V)测量证实,随着刻蚀时间从15分钟增加到30分钟,p-SiNWs的光电流密度从0.20 mA cm-2增加到0.92 mA cm-2。刻蚀时间为15分钟的p-SiNWs的转换效率为0.47,刻蚀时间为30分钟的p-SiNWs的转换效率为0.75。在不同扫描速率下进行的循环伏安(CV)实验验证了蚀刻15和30分钟制备的p-SiNWS的faradic行为。由于离子扩散缓慢和扫描速率的增加,电容随扫描速率的增加而减小。Mott-Schottky (M-S)调查显示,载体浓度显著为3.66×1020 cm-3。电化学阻抗谱(EIS)结果表明,蚀刻30 min制备的SiNWs光电阴极的电荷转移电阻为25.27 Ω,足以增强界面电荷转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of The Structural, Optical, and Morphological Properties of Sno2 Nanofilms under the Influence of Gamma Rays Influence of DC Magnetron Sputtering Power on Structural, Topography, and Gas Sensor Properties of Nb2O5/Si Thin Films. Photometry technique to map elements’ distribution on comets’ nuclei surfaces by using the new method. Influence of NiTi Spring Dimensions and Temperature on the Actuator Properties Investigation of Numerical Simulation for Adaptive Optics System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1