Potential Agricultural Uses of Micro/Nano Encapsulated Chitosan: A Review

Macromol Pub Date : 2023-08-29 DOI:10.3390/macromol3030034
Melissa García-Carrasco, Octavio Valdez-Baro, L. A. Cabanillas-Bojórquez, M. Bernal-Millán, María M. Rivera-Salas, E. P. Gutiérrez-Grijalva, J. B. Heredia
{"title":"Potential Agricultural Uses of Micro/Nano Encapsulated Chitosan: A Review","authors":"Melissa García-Carrasco, Octavio Valdez-Baro, L. A. Cabanillas-Bojórquez, M. Bernal-Millán, María M. Rivera-Salas, E. P. Gutiérrez-Grijalva, J. B. Heredia","doi":"10.3390/macromol3030034","DOIUrl":null,"url":null,"abstract":"Chitosan is a non-toxic, biodegradable, and biocompatible natural biopolymer widely used as a nanocarrier, emulsifier, flocculant, and antimicrobial agent with potential applications in industry. Recently, chitosan has been used as an encapsulating agent for bioactive plant compounds and agrochemicals by different technologies, such as spray-drying and nanoemulsions, to enhance antimicrobial activity. Chitosan nanocomposites have been shown to increase potential biocidal, antibacterial, and antifungal activity against pathogens, presenting higher stability, decreasing degradation, and prolonging the effective concentration of these bioactive compounds. Therefore, the objective of this work is to review the most outstanding aspects of the most recent developments in the different methods of encapsulation of bioactive compounds (phenolic compounds, essential oils, among others) from plants, as well as the applications on phytopathogenic diseases (fungi and bacteria) in vitro and in vivo in cereal, fruit and vegetable crops. These perspectives could provide information for the future formulation of products with high efficacy against phytopathogenic diseases as an alternative to chemical products for sustainable agriculture.","PeriodicalId":18139,"journal":{"name":"Macromol","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/macromol3030034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Chitosan is a non-toxic, biodegradable, and biocompatible natural biopolymer widely used as a nanocarrier, emulsifier, flocculant, and antimicrobial agent with potential applications in industry. Recently, chitosan has been used as an encapsulating agent for bioactive plant compounds and agrochemicals by different technologies, such as spray-drying and nanoemulsions, to enhance antimicrobial activity. Chitosan nanocomposites have been shown to increase potential biocidal, antibacterial, and antifungal activity against pathogens, presenting higher stability, decreasing degradation, and prolonging the effective concentration of these bioactive compounds. Therefore, the objective of this work is to review the most outstanding aspects of the most recent developments in the different methods of encapsulation of bioactive compounds (phenolic compounds, essential oils, among others) from plants, as well as the applications on phytopathogenic diseases (fungi and bacteria) in vitro and in vivo in cereal, fruit and vegetable crops. These perspectives could provide information for the future formulation of products with high efficacy against phytopathogenic diseases as an alternative to chemical products for sustainable agriculture.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微纳米壳聚糖在农业上的潜在应用
壳聚糖是一种无毒、可生物降解、具有生物相容性的天然生物高聚物,在纳米载体、乳化剂、絮凝剂、抗菌剂等方面有着广泛的应用前景。近年来,壳聚糖作为生物活性植物化合物和农用化学品的包封剂,通过喷雾干燥和纳米乳液等不同的技术来提高其抗菌活性。壳聚糖纳米复合材料具有潜在的杀菌、抗菌和抗真菌活性,具有较高的稳定性,降低了降解,延长了这些生物活性化合物的有效浓度。因此,本工作的目的是回顾从植物中包封生物活性化合物(酚类化合物、精油等)的不同方法的最新发展的最突出方面,以及在谷物、水果和蔬菜作物中体外和体内对植物病原疾病(真菌和细菌)的应用。这些观点可为今后研制出高效抗植物病原性疾病的产品,作为可持续农业化学产品的替代品提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
0.00%
发文量
0
期刊最新文献
The Effect of Different Extraction Conditions on the Physicochemical Properties of Novel High Methoxyl Pectin-like Polysaccharides from Green Bell Pepper (GBP) Recyclability Perspectives of the Most Diffused Biobased and Biodegradable Plastic Materials Autoclaving Achieves pH-Neutralization, Hydrogelation, and Sterilization of Chitosan Hydrogels in One Step Effect of Tacticity on London Dispersive Surface Energy, Polar Free Energy and Lewis Acid-Base Surface Energies of Poly Methyl Methacrylate by Inverse Gas Chromatography Synthesis and Characterisation of 4D-Printed NVCL-co-DEGDA Resin Using Stereolithography 3D Printing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1