New insights from old cosmic rays: A novel analysis of archival KASCADE data

D. Kostunin, I. Plokhikh, M. Ahlers, V. Tokareva, V. Lenok, P. Bezyazeekov, S. Golovachev, V. Sotnikov, R. Mullyadzhanov, E. Sotnikova
{"title":"New insights from old cosmic rays: A novel analysis of archival KASCADE data","authors":"D. Kostunin, I. Plokhikh, M. Ahlers, V. Tokareva, V. Lenok, P. Bezyazeekov, S. Golovachev, V. Sotnikov, R. Mullyadzhanov, E. Sotnikova","doi":"10.22323/1.395.0319","DOIUrl":null,"url":null,"abstract":"Cosmic ray data collected by the KASCADE air shower experiment are competitive in terms of quality and statistics with those of modern observatories. We present a novel mass composition analysis based on archival data acquired from 1998 to 2013 provided by the KASCADE Cosmic ray Data Center (KCDC). The analysis is based on modern machine learning techniques trained on simulation data provided by KCDC. We present spectra for individual groups of primary nuclei, the results of a search for anisotropies in the event arrival directions taking mass composition into account, and search for gamma-ray candidates in the PeV energy domain.","PeriodicalId":20473,"journal":{"name":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","volume":"167 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.395.0319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Cosmic ray data collected by the KASCADE air shower experiment are competitive in terms of quality and statistics with those of modern observatories. We present a novel mass composition analysis based on archival data acquired from 1998 to 2013 provided by the KASCADE Cosmic ray Data Center (KCDC). The analysis is based on modern machine learning techniques trained on simulation data provided by KCDC. We present spectra for individual groups of primary nuclei, the results of a search for anisotropies in the event arrival directions taking mass composition into account, and search for gamma-ray candidates in the PeV energy domain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
来自旧宇宙射线的新见解:对KASCADE档案数据的新分析
KASCADE气淋实验收集的宇宙射线数据在质量和统计方面与现代天文台的数据具有竞争力。基于KASCADE宇宙射线数据中心(KCDC)提供的1998 - 2013年的档案数据,我们提出了一种新的质量成分分析方法。该分析基于KCDC提供的模拟数据训练的现代机器学习技术。我们给出了初生原子核各群的光谱,在考虑质量组成的事件到达方向上搜索各向异性的结果,以及在PeV能量域中搜索伽马射线候选者的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Southern Wide-field Gamma-ray Observatory reach for Primordial Black Hole evaporation Periodicities Observed in Neutron Monitor Counting Rates Throughout Solar Cycles 20-24 Time calibration of the LHAASO-WCDA detectors Energetic particle observations close to the Sun by Solar Orbiter and Parker Solar Probe Nearly a Decade of Cosmic Ray Observations in the Very Local Interstellar Medium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1