Impact of circadian clock dysfunction on human health

S. Samanta, Sk Asif Ali
{"title":"Impact of circadian clock dysfunction on human health","authors":"S. Samanta, Sk Asif Ali","doi":"10.37349/en.2022.00002","DOIUrl":null,"url":null,"abstract":"All living organisms exhibit circadian rhythms. Humans show circadian rhythm of the different physiological functions such as sleep-wake cycle, core body temperature, feeding behavior, metabolic activity, heart rate variability, hormone secretion, and others. The hypothalamic suprachiasmatic nucleus (SCN) acts as a primary circadian pacemaker. Peripheral tissues have an endogenous circadian clock; however, SCN synchronizes the circadian activity of the peripheral clocks. The retinohypothalamic tract (RHT) from retinal ganglionic cells carries the photic signal into the SCN that regulates the rhythmic expression of the core clock genes through the feedback loop. At the output level, the SCN connects with the pineal gland and the peripheral tissues with the help of neuroendocrine mediators. Disruption of circadian clock functions is detrimental to health. Shift work, night work, chronic or acute jet lag, and light-at-night have adverse effects on circadian functions. Misalignment of circadian rhythm alters the expression of core clock genes, leading to deregulation of cellular activity and metabolic functions. Circadian rhythm dysfunction causes many pathologic conditions, including sleep disorders, cardiovascular problems, metabolic dysfunction, infertility, poor physical performance, as well as cancer. The present work has reviewed the relationship between circadian clock dysfunction and impaired physiological activities.","PeriodicalId":73001,"journal":{"name":"Exploration of neuroscience","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploration of neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37349/en.2022.00002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

All living organisms exhibit circadian rhythms. Humans show circadian rhythm of the different physiological functions such as sleep-wake cycle, core body temperature, feeding behavior, metabolic activity, heart rate variability, hormone secretion, and others. The hypothalamic suprachiasmatic nucleus (SCN) acts as a primary circadian pacemaker. Peripheral tissues have an endogenous circadian clock; however, SCN synchronizes the circadian activity of the peripheral clocks. The retinohypothalamic tract (RHT) from retinal ganglionic cells carries the photic signal into the SCN that regulates the rhythmic expression of the core clock genes through the feedback loop. At the output level, the SCN connects with the pineal gland and the peripheral tissues with the help of neuroendocrine mediators. Disruption of circadian clock functions is detrimental to health. Shift work, night work, chronic or acute jet lag, and light-at-night have adverse effects on circadian functions. Misalignment of circadian rhythm alters the expression of core clock genes, leading to deregulation of cellular activity and metabolic functions. Circadian rhythm dysfunction causes many pathologic conditions, including sleep disorders, cardiovascular problems, metabolic dysfunction, infertility, poor physical performance, as well as cancer. The present work has reviewed the relationship between circadian clock dysfunction and impaired physiological activities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物钟功能紊乱对人体健康的影响
所有生物体都有昼夜节律。人类表现出不同生理功能的昼夜节律,如睡眠-觉醒周期、核心体温、摄食行为、代谢活动、心率变异性、激素分泌等。下丘脑视交叉上核(SCN)作为主要的昼夜节律起搏器。外周组织有内源性生物钟;然而,SCN同步外围时钟的昼夜节律活动。视网膜神经节细胞的视网膜下丘脑束(retinohypothalamic tract, RHT)将光信号传递到SCN,通过反馈回路调节核心时钟基因的节律性表达。在输出水平,SCN在神经内分泌介质的帮助下与松果体和周围组织连接。生物钟功能的破坏对健康是有害的。倒班工作、夜间工作、慢性或急性时差以及夜间光线对昼夜节律功能有不利影响。昼夜节律的失调改变了核心时钟基因的表达,导致细胞活动和代谢功能的失调。昼夜节律障碍会导致许多病理状况,包括睡眠障碍、心血管问题、代谢功能障碍、不孕症、身体表现不佳以及癌症。本文综述了生物钟功能障碍与生理活动受损的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Molecular and cellular processes underlying Unverricht-Lundborg disease—prospects for early interventions and a cure The role of inflammation and oxidative stress in the pathophysiology of depressions: time to consider vitamin C deficiency Novel treatments of depression: bridging the gap in current therapeutic approaches Validation and cultural adaption of the neuropathic pain screening questionnaire painDETECT in Chinese Extracellular vesicles derived from mesenchymal stem cells ameliorate cognitive impairment caused by neuroinflammation in young but not aged mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1