Utilization of 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) as a fluorogenic reagent for the development of a spectrofluorometric assay method for taurine in energy drinks

Ahmed O. Alnajjar, Abdalla Ahmed Elbashir, R. Elgorashe, Ammar M. Ebrahim, A. M. Idris, H. A. Abd El‐Lateef
{"title":"Utilization of 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) as a fluorogenic reagent for the development of a spectrofluorometric assay method for taurine in energy drinks","authors":"Ahmed O. Alnajjar, Abdalla Ahmed Elbashir, R. Elgorashe, Ammar M. Ebrahim, A. M. Idris, H. A. Abd El‐Lateef","doi":"10.1177/17475198221114760","DOIUrl":null,"url":null,"abstract":"The development of a simple, inexpensive, sensitive, and selective spectrofluorometric assay method for taurine in energy drinks utilizing 4-fluoro-7-nitro-2,1,3-benzoxadiazole as a fluorogenic agent is described. Conditions affecting the derivatization reaction are investigated and optimized. The optimal conditions are found to be as follows: buffer, pH 10; 4-fluoro-7-nitro-2,1,3-benzoxadiazoleconcentration, 0.05%; reaction time, 30 min; temperature, 50 °C. Fluorescence measurements are carried out at a wavelength of 542 nm, with excitation at a wavelength of 485 nm. The method is validated under the optimum conditions. The method is found to be linear in the range of 2.0–12.5 µg/mL, with a correlation coefficient of 0.9993. The limits of detection and quantification (µg/mL) are 0.6 and 2.02, respectively, which are appropriate for taurine assays in commercial energy drinks. In addition, the proposed method recorded excellent accuracy since the recovery values caused by presence of excipients are found to be in the range of 99.3%–102.87%. The values of relative standard deviation for intra- and inter-day precision were found to be in the ranges of 0.236%–0.659% and 2.12%–2.63%, respectively.","PeriodicalId":15318,"journal":{"name":"Journal of Chemical Research-s","volume":"240 2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Research-s","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/17475198221114760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The development of a simple, inexpensive, sensitive, and selective spectrofluorometric assay method for taurine in energy drinks utilizing 4-fluoro-7-nitro-2,1,3-benzoxadiazole as a fluorogenic agent is described. Conditions affecting the derivatization reaction are investigated and optimized. The optimal conditions are found to be as follows: buffer, pH 10; 4-fluoro-7-nitro-2,1,3-benzoxadiazoleconcentration, 0.05%; reaction time, 30 min; temperature, 50 °C. Fluorescence measurements are carried out at a wavelength of 542 nm, with excitation at a wavelength of 485 nm. The method is validated under the optimum conditions. The method is found to be linear in the range of 2.0–12.5 µg/mL, with a correlation coefficient of 0.9993. The limits of detection and quantification (µg/mL) are 0.6 and 2.02, respectively, which are appropriate for taurine assays in commercial energy drinks. In addition, the proposed method recorded excellent accuracy since the recovery values caused by presence of excipients are found to be in the range of 99.3%–102.87%. The values of relative standard deviation for intra- and inter-day precision were found to be in the ranges of 0.236%–0.659% and 2.12%–2.63%, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用4-氟-7-硝基-2,1,3-苯并恶二唑(NBD-F)作为荧光试剂,建立了能量饮料中牛磺酸的荧光光谱测定方法
本文描述了利用4-氟-7-硝基-2,1,3-苯并恶二唑作为荧光剂,开发一种简单、廉价、敏感和选择性的能量饮料中牛磺酸的荧光光谱分析方法。对影响衍生化反应的条件进行了研究和优化。优选条件为:缓冲液,pH值为10;4-fluoro-7-nitro-2 1 3-benzoxadiazoleconcentration, 0.05%;反应时间:30 min;温度:50°C。荧光测量在波长542 nm处进行,激发波长485 nm。在最佳条件下对该方法进行了验证。该方法在2.0 ~ 12.5µg/mL范围内线性良好,相关系数为0.9993。检测限和定量限(µg/mL)分别为0.6和2.02,适用于商业功能饮料中牛磺酸的测定。此外,由于辅料的存在,该方法的回收率在99.3% ~ 102.87%范围内,记录了良好的准确性。日内精度和日间精度的相对标准偏差范围分别为0.236% ~ 0.659%和2.12% ~ 2.63%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Research-s
Journal of Chemical Research-s 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: The Journal of Chemical Research is a peer reviewed journal that publishes full-length review and research papers in all branches of experimental chemistry. The journal fills a niche by also publishing short papers, a format which favours particular types of work, e.g. the scope of new reagents or methodology, and the elucidation of the structure of novel compounds. Though welcome, short papers should not result in fragmentation of publication, they should describe a completed piece of work. The Journal is not intended as a vehicle for preliminary publications. The work must meet all the normal criteria for acceptance as regards scientific standards. Papers that contain extensive biological results or material relating to other areas of science may be diverted to more appropriate specialist journals. Areas of coverage include: Organic Chemistry; Inorganic Chemistry; Materials Chemistry; Crystallography; Computational Chemistry.
期刊最新文献
Preparation of ZrO2/Na-β and ZrO2/H-β catalysts and their catalytic performance for the Meerwein–Ponndorf–Verley reaction of cyclohexanone and isopropanol Spectroscopic and DFT study of tris(β-diketonato)cobalt(III) complexes One-pot, simple, and facile synthesis of 4-(3-benzylbenzo[d]thiazol-2(3H)-ylidene)-cyclohexa-2,5-dien-1-one derivatives via a novel three-component reaction An effective calix[4]arene-based adsorbent for tetracycline removal from water systems: Kinetic, isotherm, and thermodynamic studies A thermoregulated phase-transfer ruthenium nanocatalyst for the atmospheric hydrogenation of α,β-unsaturated ketones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1