Utilization of 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) as a fluorogenic reagent for the development of a spectrofluorometric assay method for taurine in energy drinks
Ahmed O. Alnajjar, Abdalla Ahmed Elbashir, R. Elgorashe, Ammar M. Ebrahim, A. M. Idris, H. A. Abd El‐Lateef
{"title":"Utilization of 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) as a fluorogenic reagent for the development of a spectrofluorometric assay method for taurine in energy drinks","authors":"Ahmed O. Alnajjar, Abdalla Ahmed Elbashir, R. Elgorashe, Ammar M. Ebrahim, A. M. Idris, H. A. Abd El‐Lateef","doi":"10.1177/17475198221114760","DOIUrl":null,"url":null,"abstract":"The development of a simple, inexpensive, sensitive, and selective spectrofluorometric assay method for taurine in energy drinks utilizing 4-fluoro-7-nitro-2,1,3-benzoxadiazole as a fluorogenic agent is described. Conditions affecting the derivatization reaction are investigated and optimized. The optimal conditions are found to be as follows: buffer, pH 10; 4-fluoro-7-nitro-2,1,3-benzoxadiazoleconcentration, 0.05%; reaction time, 30 min; temperature, 50 °C. Fluorescence measurements are carried out at a wavelength of 542 nm, with excitation at a wavelength of 485 nm. The method is validated under the optimum conditions. The method is found to be linear in the range of 2.0–12.5 µg/mL, with a correlation coefficient of 0.9993. The limits of detection and quantification (µg/mL) are 0.6 and 2.02, respectively, which are appropriate for taurine assays in commercial energy drinks. In addition, the proposed method recorded excellent accuracy since the recovery values caused by presence of excipients are found to be in the range of 99.3%–102.87%. The values of relative standard deviation for intra- and inter-day precision were found to be in the ranges of 0.236%–0.659% and 2.12%–2.63%, respectively.","PeriodicalId":15318,"journal":{"name":"Journal of Chemical Research-s","volume":"240 2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Research-s","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/17475198221114760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The development of a simple, inexpensive, sensitive, and selective spectrofluorometric assay method for taurine in energy drinks utilizing 4-fluoro-7-nitro-2,1,3-benzoxadiazole as a fluorogenic agent is described. Conditions affecting the derivatization reaction are investigated and optimized. The optimal conditions are found to be as follows: buffer, pH 10; 4-fluoro-7-nitro-2,1,3-benzoxadiazoleconcentration, 0.05%; reaction time, 30 min; temperature, 50 °C. Fluorescence measurements are carried out at a wavelength of 542 nm, with excitation at a wavelength of 485 nm. The method is validated under the optimum conditions. The method is found to be linear in the range of 2.0–12.5 µg/mL, with a correlation coefficient of 0.9993. The limits of detection and quantification (µg/mL) are 0.6 and 2.02, respectively, which are appropriate for taurine assays in commercial energy drinks. In addition, the proposed method recorded excellent accuracy since the recovery values caused by presence of excipients are found to be in the range of 99.3%–102.87%. The values of relative standard deviation for intra- and inter-day precision were found to be in the ranges of 0.236%–0.659% and 2.12%–2.63%, respectively.
期刊介绍:
The Journal of Chemical Research is a peer reviewed journal that publishes full-length review and research papers in all branches of experimental chemistry. The journal fills a niche by also publishing short papers, a format which favours particular types of work, e.g. the scope of new reagents or methodology, and the elucidation of the structure of novel compounds. Though welcome, short papers should not result in fragmentation of publication, they should describe a completed piece of work. The Journal is not intended as a vehicle for preliminary publications. The work must meet all the normal criteria for acceptance as regards scientific standards. Papers that contain extensive biological results or material relating to other areas of science may be diverted to more appropriate specialist journals. Areas of coverage include: Organic Chemistry; Inorganic Chemistry; Materials Chemistry; Crystallography; Computational Chemistry.