Quantitative Software Change Prediction in Open Source Web Projects Using Time Series Forecasting

Wasiur Rhmann
{"title":"Quantitative Software Change Prediction in Open Source Web Projects Using Time Series Forecasting","authors":"Wasiur Rhmann","doi":"10.4018/IJOSSP.2021040103","DOIUrl":null,"url":null,"abstract":"Software change prediction (SCP) is used for the prediction of changes earlier in the software development life cycle. It identifies the files that are change prone. Software maintenance costs can be reduced with the help of accurate prediction of change-prone files. Most of the literature of SCP deals with the identification of a class as change prone or not change prone. In the present work, the amount of change in a web project in terms of line of code added (loc_added), line of code deleted (loc_deleted), and lines of code (LOC) are predicted using time series forecasting method of machine learning. Data of web projects is obtained from GIT repository using Pydriller Python package extractor. The obtained result showed that support vector machine (SVM) is good for prediction of loc_added and loc_removed while the random forest is good for the prediction of LOC. Results advocate the use machine learning techniques for forecasting changes amount in web projects.","PeriodicalId":53605,"journal":{"name":"International Journal of Open Source Software and Processes","volume":"11 1","pages":"36-51"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Source Software and Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJOSSP.2021040103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Software change prediction (SCP) is used for the prediction of changes earlier in the software development life cycle. It identifies the files that are change prone. Software maintenance costs can be reduced with the help of accurate prediction of change-prone files. Most of the literature of SCP deals with the identification of a class as change prone or not change prone. In the present work, the amount of change in a web project in terms of line of code added (loc_added), line of code deleted (loc_deleted), and lines of code (LOC) are predicted using time series forecasting method of machine learning. Data of web projects is obtained from GIT repository using Pydriller Python package extractor. The obtained result showed that support vector machine (SVM) is good for prediction of loc_added and loc_removed while the random forest is good for the prediction of LOC. Results advocate the use machine learning techniques for forecasting changes amount in web projects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用时间序列预测的开源Web项目定量软件变更预测
软件变更预测(SCP)用于预测软件开发生命周期早期的变更。它识别容易发生更改的文件。通过准确预测易发生更改的文件,可以降低软件维护成本。大多数关于SCP的文献都是关于一个类是易变的还是不易变的。在目前的工作中,使用机器学习的时间序列预测方法来预测web项目中添加的代码行(loc_added),删除的代码行(loc_deleted)和代码行(LOC)的变化量。web项目的数据使用Pydriller Python包提取器从GIT存储库中获取。结果表明,支持向量机(SVM)对loc_added和loc_removed的预测效果较好,而随机森林对LOC的预测效果较好。结果提倡使用机器学习技术预测web项目的变化量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
16
期刊介绍: The International Journal of Open Source Software and Processes (IJOSSP) publishes high-quality peer-reviewed and original research articles on the large field of open source software and processes. This wide area entails many intriguing question and facets, including the special development process performed by a large number of geographically dispersed programmers, community issues like coordination and communication, motivations of the participants, and also economic and legal issues. Beyond this topic, open source software is an example of a highly distributed innovation process led by the users. Therefore, many aspects have relevance beyond the realm of software and its development. In this tradition, IJOSSP also publishes papers on these topics. IJOSSP is a multi-disciplinary outlet, and welcomes submissions from all relevant fields of research and applying a multitude of research approaches.
期刊最新文献
Organizational Influencers in Open-Source Software Projects Enhancing Clustering Performance Using Topic Modeling-Based Dimensionality Reduction Cross Project Software Refactoring Prediction Using Optimized Deep Learning Neural Network with the Aid of Attribute Selection Bug Triage Automation Approaches Modelling and Simulation of Patient Flow in the Emergency Department During the COVID-19 Pandemic Using Hierarchical Coloured Petri Net
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1