{"title":"Analyzing Protein Similarity by Clustering Molecular Surface Maps","authors":"Karsten Schatz, Florian Friess, M. Schäfer, T. Ertl, M. Krone","doi":"10.2312/vcbm.20201177","DOIUrl":null,"url":null,"abstract":"Many biochemical and biomedical applications like protein engineering or drug design are concerned with finding functionally similar proteins, however, this remains to be a challenging task. We present a new imaged-based approach for identifying and visually comparing proteins with similar function that builds on the hierarchical clustering of Molecular Surface Maps. Such maps are two-dimensional representations of complex molecular surfaces and can be used to visualize the topology and different physico-chemical properties of proteins. Our method is based on the idea that visually similar maps also imply a similarity in the function of the mapped proteins. To determine map similarity we compute descriptive feature vectors using image moments, color moments, or a Convolutional Neural Network and use them for a hierarchical clustering of the maps. We show that image similarity as found by our clustering corresponds to functional similarity of mapped proteins by comparing our results to the BRENDA database, which provides a hierarchical function-based annotation of enzymes. We also compare our results to the TM-score, which is a similarity value for pairs of arbitrary proteins. Our visualization prototype supports the entire workflow from map generation, similarity computing to clustering and can be used to interactively explore and analyze the results. CCS Concepts • Human-centered computing → Dendrograms; Scientific visualization; • Applied computing → Bioinformatics; © 2020 The Author(s) Eurographics Proceedings © 2020 The Eurographics Association. DOI: 10.2312/vcbm.20201177 https://diglib.eg.org https://www.eg.org K. Schatz, F. Frieß, M. Schäfer, T. Ertl, and M. Krone / Analyzing Protein Similarity by Clustering Molecular Surface Maps","PeriodicalId":88872,"journal":{"name":"Eurographics Workshop on Visual Computing for Biomedicine","volume":"74 1","pages":"103-114"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Workshop on Visual Computing for Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/vcbm.20201177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
聚类分子表面图分析蛋白质相似性
许多生物化学和生物医学应用,如蛋白质工程或药物设计,都涉及到寻找功能相似的蛋白质,然而,这仍然是一项具有挑战性的任务。我们提出了一种新的基于图像的方法来识别和视觉比较具有相似功能的蛋白质,该方法建立在分子表面图的分层聚类上。这种图谱是复杂分子表面的二维表示,可用于可视化蛋白质的拓扑结构和不同的物理化学性质。我们的方法是基于这样的想法,即视觉上相似的地图也意味着在绘制的蛋白质的功能上相似。为了确定地图的相似性,我们使用图像矩、颜色矩或卷积神经网络计算描述性特征向量,并将它们用于地图的分层聚类。通过将我们的结果与BRENDA数据库进行比较,我们发现通过聚类发现的图像相似性与映射蛋白质的功能相似性相对应,该数据库提供了基于分层功能的酶注释。我们还将我们的结果与tm分数进行了比较,tm分数是任意蛋白质对的相似性值。我们的可视化原型支持从地图生成、相似性计算到聚类的整个工作流程,并可用于交互式地探索和分析结果。•以人为中心的计算→树形图;科学可视化;•应用计算→生物信息学;©2020 The Author(s) Eurographics Proceedings©2020 The Eurographics Association。DOI: 10.2312 / vcbm。20201177 https://diglib.eg.org https://www.eg.org K. Schatz, F. Frieß, M. Schäfer, T. Ertl, M. Krone /聚类分子表面图分析蛋白质相似性
本文章由计算机程序翻译,如有差异,请以英文原文为准。