Analyzing Protein Similarity by Clustering Molecular Surface Maps

Karsten Schatz, Florian Friess, M. Schäfer, T. Ertl, M. Krone
{"title":"Analyzing Protein Similarity by Clustering Molecular Surface Maps","authors":"Karsten Schatz, Florian Friess, M. Schäfer, T. Ertl, M. Krone","doi":"10.2312/vcbm.20201177","DOIUrl":null,"url":null,"abstract":"Many biochemical and biomedical applications like protein engineering or drug design are concerned with finding functionally similar proteins, however, this remains to be a challenging task. We present a new imaged-based approach for identifying and visually comparing proteins with similar function that builds on the hierarchical clustering of Molecular Surface Maps. Such maps are two-dimensional representations of complex molecular surfaces and can be used to visualize the topology and different physico-chemical properties of proteins. Our method is based on the idea that visually similar maps also imply a similarity in the function of the mapped proteins. To determine map similarity we compute descriptive feature vectors using image moments, color moments, or a Convolutional Neural Network and use them for a hierarchical clustering of the maps. We show that image similarity as found by our clustering corresponds to functional similarity of mapped proteins by comparing our results to the BRENDA database, which provides a hierarchical function-based annotation of enzymes. We also compare our results to the TM-score, which is a similarity value for pairs of arbitrary proteins. Our visualization prototype supports the entire workflow from map generation, similarity computing to clustering and can be used to interactively explore and analyze the results. CCS Concepts • Human-centered computing → Dendrograms; Scientific visualization; • Applied computing → Bioinformatics; © 2020 The Author(s) Eurographics Proceedings © 2020 The Eurographics Association. DOI: 10.2312/vcbm.20201177 https://diglib.eg.org https://www.eg.org K. Schatz, F. Frieß, M. Schäfer, T. Ertl, and M. Krone / Analyzing Protein Similarity by Clustering Molecular Surface Maps","PeriodicalId":88872,"journal":{"name":"Eurographics Workshop on Visual Computing for Biomedicine","volume":"74 1","pages":"103-114"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Workshop on Visual Computing for Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/vcbm.20201177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Many biochemical and biomedical applications like protein engineering or drug design are concerned with finding functionally similar proteins, however, this remains to be a challenging task. We present a new imaged-based approach for identifying and visually comparing proteins with similar function that builds on the hierarchical clustering of Molecular Surface Maps. Such maps are two-dimensional representations of complex molecular surfaces and can be used to visualize the topology and different physico-chemical properties of proteins. Our method is based on the idea that visually similar maps also imply a similarity in the function of the mapped proteins. To determine map similarity we compute descriptive feature vectors using image moments, color moments, or a Convolutional Neural Network and use them for a hierarchical clustering of the maps. We show that image similarity as found by our clustering corresponds to functional similarity of mapped proteins by comparing our results to the BRENDA database, which provides a hierarchical function-based annotation of enzymes. We also compare our results to the TM-score, which is a similarity value for pairs of arbitrary proteins. Our visualization prototype supports the entire workflow from map generation, similarity computing to clustering and can be used to interactively explore and analyze the results. CCS Concepts • Human-centered computing → Dendrograms; Scientific visualization; • Applied computing → Bioinformatics; © 2020 The Author(s) Eurographics Proceedings © 2020 The Eurographics Association. DOI: 10.2312/vcbm.20201177 https://diglib.eg.org https://www.eg.org K. Schatz, F. Frieß, M. Schäfer, T. Ertl, and M. Krone / Analyzing Protein Similarity by Clustering Molecular Surface Maps
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚类分子表面图分析蛋白质相似性
许多生物化学和生物医学应用,如蛋白质工程或药物设计,都涉及到寻找功能相似的蛋白质,然而,这仍然是一项具有挑战性的任务。我们提出了一种新的基于图像的方法来识别和视觉比较具有相似功能的蛋白质,该方法建立在分子表面图的分层聚类上。这种图谱是复杂分子表面的二维表示,可用于可视化蛋白质的拓扑结构和不同的物理化学性质。我们的方法是基于这样的想法,即视觉上相似的地图也意味着在绘制的蛋白质的功能上相似。为了确定地图的相似性,我们使用图像矩、颜色矩或卷积神经网络计算描述性特征向量,并将它们用于地图的分层聚类。通过将我们的结果与BRENDA数据库进行比较,我们发现通过聚类发现的图像相似性与映射蛋白质的功能相似性相对应,该数据库提供了基于分层功能的酶注释。我们还将我们的结果与tm分数进行了比较,tm分数是任意蛋白质对的相似性值。我们的可视化原型支持从地图生成、相似性计算到聚类的整个工作流程,并可用于交互式地探索和分析结果。•以人为中心的计算→树形图;科学可视化;•应用计算→生物信息学;©2020 The Author(s) Eurographics Proceedings©2020 The Eurographics Association。DOI: 10.2312 / vcbm。20201177 https://diglib.eg.org https://www.eg.org K. Schatz, F. Frieß, M. Schäfer, T. Ertl, M. Krone /聚类分子表面图分析蛋白质相似性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Analytics to Assess Deep Learning Models for Cross-Modal Brain Tumor Segmentation Distance Visualizations for Vascular Structures in Desktop and VR: Overview and Implementation Is there a Tornado in Alex's Blood Flow? A Case Study for Narrative Medical Visualization HistoContours: a Framework for Visual Annotation of Histopathology Whole Slide Images Predicting, Analyzing and Communicating Outcomes of COVID-19 Hospitalizations with Medical Images and Clinical Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1