Y. Charles, Chun-Lei Zhang, M. Gaspérini, B. Bacroix
{"title":"Identification methodology of a rate-sensitive constitutive law with mean field and full field modeling approaches for polycrystalline materials","authors":"Y. Charles, Chun-Lei Zhang, M. Gaspérini, B. Bacroix","doi":"10.5802/crmeca.56","DOIUrl":null,"url":null,"abstract":"The present paper deals with the consideration of the rate-sensitivity mechanical behavior of metallic materials, in the framework of mean field and full field homogenization approaches. We re-examine the possibility of describing properly this rate sensitivity with a simple and widely used power law expressed at the level of the slip system, and we propose a methodology to accelerate the identification of the global material constitutive law for Finite Element (FE) simulations. For such an aim, simulations of a tensile test are conducted, using a simple homogenization model (the Taylor one, used in a relaxed constraint form) and an FE code (Abaqus), both using the same single-crystal rate-dependent constitutive law. It is shown that, provided that the identification of this law is performed with care and well adapted to the examined case (rate-sensitive or insensitive materials, static and/or dynamic ranges), the simple power law can be used to simulate the macroscopic behavior of polycrystalline aggregates in a wide range of strain rate (including both static and dynamic regimes) and strain-rate sensitivity values (up the rate-insensitive limit).","PeriodicalId":50997,"journal":{"name":"Comptes Rendus Mecanique","volume":"200 1","pages":"1-20"},"PeriodicalIF":1.0000,"publicationDate":"2020-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mecanique","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5802/crmeca.56","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The present paper deals with the consideration of the rate-sensitivity mechanical behavior of metallic materials, in the framework of mean field and full field homogenization approaches. We re-examine the possibility of describing properly this rate sensitivity with a simple and widely used power law expressed at the level of the slip system, and we propose a methodology to accelerate the identification of the global material constitutive law for Finite Element (FE) simulations. For such an aim, simulations of a tensile test are conducted, using a simple homogenization model (the Taylor one, used in a relaxed constraint form) and an FE code (Abaqus), both using the same single-crystal rate-dependent constitutive law. It is shown that, provided that the identification of this law is performed with care and well adapted to the examined case (rate-sensitive or insensitive materials, static and/or dynamic ranges), the simple power law can be used to simulate the macroscopic behavior of polycrystalline aggregates in a wide range of strain rate (including both static and dynamic regimes) and strain-rate sensitivity values (up the rate-insensitive limit).
期刊介绍:
The Comptes rendus - Mécanique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, …
The journal publishes original and high-quality research articles. These can be in either in English or in French, with an abstract in both languages. An abridged version of the main text in the second language may also be included.