Numerical Simulation and Validation of Multiscale 3D Laser Spiral Machining of Microholes

IF 1.1 4区 物理与天体物理 Q4 PHYSICS, APPLIED Laser and Particle Beams Pub Date : 2022-03-09 DOI:10.1155/2022/2455226
Yiwei Dong, Qianwen Ye, Qi Li, Xiang Guo, Saitao Zhang, Naixian Hou
{"title":"Numerical Simulation and Validation of Multiscale 3D Laser Spiral Machining of Microholes","authors":"Yiwei Dong, Qianwen Ye, Qi Li, Xiang Guo, Saitao Zhang, Naixian Hou","doi":"10.1155/2022/2455226","DOIUrl":null,"url":null,"abstract":"Femtosecond laser ablation is widely applied in high-precision machining of microholes in aeroengine turbine blades. To further explore the mechanism of action during the laser processing of microholes, numerical simulations were performed on the basis of a molecular dynamics (MD) method coupled with a two-temperature model (TTM). Laser irradiation on the surface of copper for different femtosecond-laser processing parameters is investigated in this work. Through the femtosecond-laser single-pulse central ablation simulation model, the laser energy flux density in a Gaussian laser spot range was discretized and analyzed to calculate the ablation depth at multiple points separately. The cross-sectional morphology of the femtosecond-laser single-pulse ablation pits was approximated and fitted. Finally, a 3D simulation model of the whole process of multiscale femtosecond-laser spiral processing microholes was established by superimposing multipulse femtosecond-laser spiral trajectories. This provides a theoretical basis for analyzing the evolution of geometric parameters and morphological characteristics of the hole during machining with specific laser and process parameters.","PeriodicalId":49925,"journal":{"name":"Laser and Particle Beams","volume":"15 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser and Particle Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/2455226","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

Femtosecond laser ablation is widely applied in high-precision machining of microholes in aeroengine turbine blades. To further explore the mechanism of action during the laser processing of microholes, numerical simulations were performed on the basis of a molecular dynamics (MD) method coupled with a two-temperature model (TTM). Laser irradiation on the surface of copper for different femtosecond-laser processing parameters is investigated in this work. Through the femtosecond-laser single-pulse central ablation simulation model, the laser energy flux density in a Gaussian laser spot range was discretized and analyzed to calculate the ablation depth at multiple points separately. The cross-sectional morphology of the femtosecond-laser single-pulse ablation pits was approximated and fitted. Finally, a 3D simulation model of the whole process of multiscale femtosecond-laser spiral processing microholes was established by superimposing multipulse femtosecond-laser spiral trajectories. This provides a theoretical basis for analyzing the evolution of geometric parameters and morphological characteristics of the hole during machining with specific laser and process parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微孔多尺度激光三维螺旋加工的数值模拟与验证
飞秒激光烧蚀广泛应用于航空发动机涡轮叶片微孔的高精度加工。为了进一步探讨微孔激光加工过程中的作用机理,采用分子动力学(MD)方法结合双温模型(TTM)进行了数值模拟。研究了不同飞秒激光加工参数对铜表面激光辐照的影响。通过飞秒激光单脉冲中心烧蚀仿真模型,对高斯激光光斑范围内的激光能量通量密度进行离散化分析,分别计算多点烧蚀深度。对飞秒激光单脉冲烧蚀坑的横截面形貌进行了近似拟合。最后,通过叠加多脉冲飞秒激光螺旋轨迹,建立了多尺度飞秒激光螺旋加工微孔全过程的三维仿真模型。这为分析特定激光和工艺参数加工过程中孔的几何参数和形态特征的演变提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Laser and Particle Beams
Laser and Particle Beams PHYSICS, APPLIED-
CiteScore
1.90
自引率
11.10%
发文量
25
审稿时长
1 months
期刊介绍: Laser and Particle Beams is an international journal which deals with basic physics issues of intense laser and particle beams, and the interaction of these beams with matter. Research on pulse power technology associated with beam generation is also of strong interest. Subjects covered include the physics of high energy densities; non-LTE phenomena; hot dense matter and related atomic, plasma and hydrodynamic physics and astrophysics; intense sources of coherent radiation; high current particle accelerators; beam-wave interaction; and pulsed power technology.
期刊最新文献
Numerical analysis of X-ray multilayer Fresnel zone plates with high aspect ratios Hot electron emission characteristics from thin metal foil targets irradiated by terawatt laser Flux and estimated spectra from a low-intensity laser-driven X-ray source Numerical Study of Carbon Nanofoam Targets for Laser-Driven Inertial Fusion Experiments Helium as a Surrogate for Deuterium in LPI Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1