{"title":"Bi-layered PLGA electrospun membrane with occlusive and osteogenic properties for periodontal regeneration","authors":"Meiling Zhong, Jixia Lin, Zhimin He, Wuchao Wu, De-hui Ji, Richao Zhang, Jiali Zhang","doi":"10.1177/08839115221095257","DOIUrl":null,"url":null,"abstract":"Guided tissue regeneration (GTR) membranes not only can hamper undesirable tissues down-growth into the defects but also can selectively promote the in-growth of regenerative bone tissue, playing a critical role in periodontal regeneration. Herein, a bi-layered electrospun membrane with different sized pores was designed and fabricated by adjusting electrospinning parameters combing with facile two-step electrospinning. The small-sized pore layer (SL) as occlusive layer consisted of electrospun poly (lactic-co-glycolic acid) (PLGA) nanofibers, while the macroporous osteoconductive layer (ML) was attained via introducing the nano-hydroxyapatite (nHA) particles into PLGA nanofibers during electrospinning. Morphological results such as surface topography, nanofiber size, and pore size distribution, showed that the SL exhibited a dense structure with pore size mainly from 4 to 7 μm. In contrast, the ML possessed a loosely packed structure with pore size mainly from 20 to 28 μm, which was beneficial to the infiltration of the cells. Fourier transform infrared spectroscopy (FTIR), Energy dispersive spectrometer (EDS), and X-ray diffractometry (XRD) results showed that nHA particles were evenly loaded in PLGA nanofibers. In vitro biodegradation tests suggested that the bi-layered membrane possessed a proper degradation timeframe, which must function for at least 4 to 6 weeks. The cell experiments indicated that the bi-layered electrospun membrane possessed good cytocompatibility and proved the effective barrier potency of the small-sized pore layer. Furthermore, as revealed by the alkaline phosphate activity test, the PLGA/nHA layer possessed an improved osteogenic capacity for Human osteosarcoma cells (MG63). These results indicate that the bi-layered electrospun membrane may have potential for periodontal tissue regeneration. Graphical Abstract","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"337 1","pages":"284 - 298"},"PeriodicalIF":2.1000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioactive and Compatible Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08839115221095257","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Guided tissue regeneration (GTR) membranes not only can hamper undesirable tissues down-growth into the defects but also can selectively promote the in-growth of regenerative bone tissue, playing a critical role in periodontal regeneration. Herein, a bi-layered electrospun membrane with different sized pores was designed and fabricated by adjusting electrospinning parameters combing with facile two-step electrospinning. The small-sized pore layer (SL) as occlusive layer consisted of electrospun poly (lactic-co-glycolic acid) (PLGA) nanofibers, while the macroporous osteoconductive layer (ML) was attained via introducing the nano-hydroxyapatite (nHA) particles into PLGA nanofibers during electrospinning. Morphological results such as surface topography, nanofiber size, and pore size distribution, showed that the SL exhibited a dense structure with pore size mainly from 4 to 7 μm. In contrast, the ML possessed a loosely packed structure with pore size mainly from 20 to 28 μm, which was beneficial to the infiltration of the cells. Fourier transform infrared spectroscopy (FTIR), Energy dispersive spectrometer (EDS), and X-ray diffractometry (XRD) results showed that nHA particles were evenly loaded in PLGA nanofibers. In vitro biodegradation tests suggested that the bi-layered membrane possessed a proper degradation timeframe, which must function for at least 4 to 6 weeks. The cell experiments indicated that the bi-layered electrospun membrane possessed good cytocompatibility and proved the effective barrier potency of the small-sized pore layer. Furthermore, as revealed by the alkaline phosphate activity test, the PLGA/nHA layer possessed an improved osteogenic capacity for Human osteosarcoma cells (MG63). These results indicate that the bi-layered electrospun membrane may have potential for periodontal tissue regeneration. Graphical Abstract
期刊介绍:
The use and importance of biomedical polymers, especially in pharmacology, is growing rapidly. The Journal of Bioactive and Compatible Polymers is a fully peer-reviewed scholarly journal that provides biomedical polymer scientists and researchers with new information on important advances in this field. Examples of specific areas of interest to the journal include: polymeric drugs and drug design; polymeric functionalization and structures related to biological activity or compatibility; natural polymer modification to achieve specific biological activity or compatibility; enzyme modelling by polymers; membranes for biological use; liposome stabilization and cell modeling. This journal is a member of the Committee on Publication Ethics (COPE).