On Generating Exponentially Distributed Variates by Using Early Rejection

Baoying Fan, Yusong Du, Baodian Wei, Xiao Ma
{"title":"On Generating Exponentially Distributed Variates by Using Early Rejection","authors":"Baoying Fan, Yusong Du, Baodian Wei, Xiao Ma","doi":"10.1109/ICCC47050.2019.9064220","DOIUrl":null,"url":null,"abstract":"We revisit von Neumann’s algorithm for generating exponentially distributed variable. This algorithm requires$e^{2}/(e-1)\\approx 4.30$ uniform deviates from (0,1) on average to generate an exponentially distributed variable. In 2016, the early rejection was suggested by Karney to use in von Neumann’s algorithm for lowering the expected number of uniform deviates to $el(\\sqrt{e}-1)\\approx 4.19$. In this paper, we give a new parameter setting for the early rejection step, which can help reduce the expected number to a minimum of 4. The experimental results also show that our improved version of von Neumann’s algorithm can be slightly more efficient than the version presented by Karney especially for software implementations.","PeriodicalId":6739,"journal":{"name":"2019 IEEE 5th International Conference on Computer and Communications (ICCC)","volume":"25 1","pages":"1307-1311"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 5th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC47050.2019.9064220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We revisit von Neumann’s algorithm for generating exponentially distributed variable. This algorithm requires$e^{2}/(e-1)\approx 4.30$ uniform deviates from (0,1) on average to generate an exponentially distributed variable. In 2016, the early rejection was suggested by Karney to use in von Neumann’s algorithm for lowering the expected number of uniform deviates to $el(\sqrt{e}-1)\approx 4.19$. In this paper, we give a new parameter setting for the early rejection step, which can help reduce the expected number to a minimum of 4. The experimental results also show that our improved version of von Neumann’s algorithm can be slightly more efficient than the version presented by Karney especially for software implementations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用早期拒绝法生成指数分布变量
我们重新讨论了冯·诺依曼生成指数分布变量的算法。该算法需要$e^{2}/(e-1)\approx 4.30$均匀偏离(0,1)的平均值来生成指数分布变量。2016年,Karney建议将早期排斥用于冯·诺伊曼算法中,以降低均匀偏差的期望数至$el(\sqrt{e}-1)\approx 4.19$。在本文中,我们给出了一个新的参数设置的早期拒绝步骤,可以帮助减少期望的数量到最小的4。实验结果还表明,我们改进的冯·诺依曼算法在软件实现方面比Karney提出的算法效率略高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning Automata-Based Scalable PCE for Load-Balancing in Multi-carrier Domain Sequences RACAC: An Approach toward RBAC and ABAC Combining Access Control A Novel Localization Method Based on FDA Beam Intersection A Lightweight Encryption Algorithm for Edge Networks in Software-Defined Industrial Internet of Things CS-Based Channel Estimation for Underwater Acoustic Time Reversal FBMC System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1