MRI denoising using bilateral filter in redundant wavelet domain

C. S. Anand, J. Sahambi
{"title":"MRI denoising using bilateral filter in redundant wavelet domain","authors":"C. S. Anand, J. Sahambi","doi":"10.1109/TENCON.2008.4766742","DOIUrl":null,"url":null,"abstract":"Thermal noise is the main source of noise in Magnetic Resonance Imaging (MRI) technique. The image is commonly reconstructed by computing inverse discrete Fourier transform of the raw data. The noise in the reconstructed complex data is complex white gaussian noise. The magnitude of the reconstructed magnetic resonance image is used for diagnosis and automatic computer analysis. An efficient method for enhancement of noisy magnetic resonance image using Bilateral filter in the undecimated wavelet domain is proposed. Undecimated Wavelet Transform (UDWT) is employed to provide effective representation of the noisy coefficients. The filter coefficients of the UDWT are not up sampled with increase in the level of decomposition. Applying bilateral filter on the transformed approximation coefficients, effectively preserves the relevant edge features and removes the noisy coefficients. The reconstructed MRI data has high peak signal to noise ratio (PSNR) compared to the classical wavelet domain denoising approaches.","PeriodicalId":22230,"journal":{"name":"TENCON 2008 - 2008 IEEE Region 10 Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2008 - 2008 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2008.4766742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

Abstract

Thermal noise is the main source of noise in Magnetic Resonance Imaging (MRI) technique. The image is commonly reconstructed by computing inverse discrete Fourier transform of the raw data. The noise in the reconstructed complex data is complex white gaussian noise. The magnitude of the reconstructed magnetic resonance image is used for diagnosis and automatic computer analysis. An efficient method for enhancement of noisy magnetic resonance image using Bilateral filter in the undecimated wavelet domain is proposed. Undecimated Wavelet Transform (UDWT) is employed to provide effective representation of the noisy coefficients. The filter coefficients of the UDWT are not up sampled with increase in the level of decomposition. Applying bilateral filter on the transformed approximation coefficients, effectively preserves the relevant edge features and removes the noisy coefficients. The reconstructed MRI data has high peak signal to noise ratio (PSNR) compared to the classical wavelet domain denoising approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于冗余小波域双边滤波的MRI去噪方法
热噪声是磁共振成像(MRI)技术中的主要噪声源。通常通过计算原始数据的离散傅里叶反变换来重建图像。重构后的复数据噪声为复高斯白噪声。重建的磁共振图像的大小用于诊断和自动计算机分析。提出了一种在未消差小波域中利用双边滤波器对磁共振图像进行有效增强的方法。采用未消差小波变换(UDWT)对噪声系数进行有效表示。UDWT的滤波系数不会随着分解程度的增加而上升。对变换后的近似系数进行双边滤波,有效地保留了相关的边缘特征,去除了噪声系数。与传统的小波域去噪方法相比,重构后的MRI数据具有较高的峰值信噪比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measured impedance by distance relay for inter phase faults in presence of SSSC on a double circuit transmission line A parallel architecture for successive elimination block matching algorithm An RNS based transform architecture for H.264/AVC Routing protocol enhancement for handling node mobility in wireless sensor networks MPEG-21-based scalable bitstream adaptation using medium grain scalability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1