Differential activation of the enzymatic antioxidant system of Abelmoschus esculentus L. under CdCl2 and HgCl2 exposure

A. Hameed, T. N. Qadri, Mahmooduzzafar, T. O. Siddiqi, M. Iqbal
{"title":"Differential activation of the enzymatic antioxidant system of Abelmoschus esculentus L. under CdCl2 and HgCl2 exposure","authors":"A. Hameed, T. N. Qadri, Mahmooduzzafar, T. O. Siddiqi, M. Iqbal","doi":"10.1590/S1677-04202011000100007","DOIUrl":null,"url":null,"abstract":"Cadmium and Mercury induced varying responses in Abelmoschus esculentus L. in relation to enzymes (ascorbate peroxidase (APX, 1.11.1.11), catalase (CAT, 1.11.1.6), glutathione reductase (GR, 1.6.4.2) and superoxide dismutase (SOD, 1.15.1.1) which are most related to the levels of Hg and Cd applied and concentrations of thiol groups already present or induced upon treatment. In the present investigation varying concentrations of CdCl2 and HgCl2 (0, 0.05, 0.10, 0.50, 1 and 2mM respectively) applied to plant in the soil shows a significant increase in ascorbate peroxidase, glutathione reductase and superoxide dismutase activities, and the respective metal accumulation. It reveals a mechanism for constant detoxification of H2O2 that have to be associated with adaptations and ultimate survival of this plant species during stress conditions. A reduction of catalase activities was observed on exposure to these metals, which is supposedly due to the inhibition of enzyme synthesis. Root length, shoot length, number of leaves showed an enhancement with 0.05 mM CdCl2 dose then a gradual decline with the increase in concentrations. The results indicate that A. esculentus is tolerant to high concentrations of these metals, a property related to a differential activation of its enzymatic antioxidant system, and also reveal that this species has a higher capacity of Cd absorption.","PeriodicalId":9278,"journal":{"name":"Brazilian Journal of Plant Physiology","volume":"30 1","pages":"46-54"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Plant Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/S1677-04202011000100007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Cadmium and Mercury induced varying responses in Abelmoschus esculentus L. in relation to enzymes (ascorbate peroxidase (APX, 1.11.1.11), catalase (CAT, 1.11.1.6), glutathione reductase (GR, 1.6.4.2) and superoxide dismutase (SOD, 1.15.1.1) which are most related to the levels of Hg and Cd applied and concentrations of thiol groups already present or induced upon treatment. In the present investigation varying concentrations of CdCl2 and HgCl2 (0, 0.05, 0.10, 0.50, 1 and 2mM respectively) applied to plant in the soil shows a significant increase in ascorbate peroxidase, glutathione reductase and superoxide dismutase activities, and the respective metal accumulation. It reveals a mechanism for constant detoxification of H2O2 that have to be associated with adaptations and ultimate survival of this plant species during stress conditions. A reduction of catalase activities was observed on exposure to these metals, which is supposedly due to the inhibition of enzyme synthesis. Root length, shoot length, number of leaves showed an enhancement with 0.05 mM CdCl2 dose then a gradual decline with the increase in concentrations. The results indicate that A. esculentus is tolerant to high concentrations of these metals, a property related to a differential activation of its enzymatic antioxidant system, and also reveal that this species has a higher capacity of Cd absorption.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CdCl2和HgCl2对沙鼠酶抗氧化系统激活的影响
镉和汞诱导沙鼠对各种酶(抗坏血酸过氧化物酶(APX, 1.11.1.11)、过氧化氢酶(CAT, 1.11.1.6)、谷胱甘肽还原酶(GR, 1.6.4.2)和超氧化物歧化酶(SOD, 1.15.1.1)产生不同的反应,这些酶与施加的汞和镉水平以及处理后已经存在或诱导的硫基浓度关系最为密切。在本研究中,不同浓度的CdCl2和HgCl2(分别为0、0.05、0.10、0.50、1和2mM)施用于植物土壤中,抗坏血酸过氧化物酶、谷胱甘肽还原酶和超氧化物歧化酶活性显著增加,金属积累量显著增加。它揭示了一种持续解毒H2O2的机制,这种机制与这种植物在逆境条件下的适应和最终生存有关。过氧化氢酶活性的降低被观察到暴露于这些金属,这可能是由于酶合成的抑制。在0.05 mM CdCl2处理下,根长、茎长、叶数均呈增强趋势,但随着浓度的增加,根长、茎长、叶数逐渐下降。结果表明,金盏花对这些高浓度的金属具有耐受性,这一特性与其酶抗氧化系统的差异激活有关,同时也表明金盏花具有更高的Cd吸收能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Molecular characterization of the polyphenol oxidase gene in lulo (Solanum quitoense Lam.) var. Castilla An overview of the Brazilian Journal of Plant Physiology: we need a push! Cd-tolerance markers of Pfaffia glomerata (Spreng.) Pedersen plants: anatomical and physiological features The chlorophyll a fluorescence as an indicator of the temperature stress in the leaves of Prunus persica Increasing plant longevity and associated metabolic events in potted carnation (Dianthus caryophyllus L. Clove Pink)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1