{"title":"Behavior feature extraction method of college students’ social network in sports field based on clustering algorithm","authors":"Yonggan Wang, Haiou Sun","doi":"10.1515/jisys-2022-0030","DOIUrl":null,"url":null,"abstract":"Abstract In order to improve the integrity of the social network behavior feature extraction results for sports college students, this study proposes to be based on the clustering algorithm. This study analyzes the social network information dissemination mechanism in the field of college students’ sports, obtains the real-time social behavior data in the network environment combined with the analysis results, and processes the obtained social network behavior data from two aspects of data cleaning and de-duplication. Using clustering algorithm to determine the type of social network user behavior, setting the characteristics of social network behavior attributes, and finally through quantitative and standardized processing, get the results of college students’ sports field social network behavior characteristics extraction. The experimental results showed that the completeness of the method feature extraction results improved to 9.93%, and the average extraction time cost was 0.344 s, with high result integrity and obvious advantages in the extraction speed.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"184 1 1","pages":"477 - 488"},"PeriodicalIF":2.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2022-0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In order to improve the integrity of the social network behavior feature extraction results for sports college students, this study proposes to be based on the clustering algorithm. This study analyzes the social network information dissemination mechanism in the field of college students’ sports, obtains the real-time social behavior data in the network environment combined with the analysis results, and processes the obtained social network behavior data from two aspects of data cleaning and de-duplication. Using clustering algorithm to determine the type of social network user behavior, setting the characteristics of social network behavior attributes, and finally through quantitative and standardized processing, get the results of college students’ sports field social network behavior characteristics extraction. The experimental results showed that the completeness of the method feature extraction results improved to 9.93%, and the average extraction time cost was 0.344 s, with high result integrity and obvious advantages in the extraction speed.
期刊介绍:
The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.