Generative Modeling of Audible Shapes for Object Perception

Zhoutong Zhang, Jiajun Wu, Qiujia Li, Zhengjia Huang, James Traer, Josh H. McDermott, J. Tenenbaum, W. Freeman
{"title":"Generative Modeling of Audible Shapes for Object Perception","authors":"Zhoutong Zhang, Jiajun Wu, Qiujia Li, Zhengjia Huang, James Traer, Josh H. McDermott, J. Tenenbaum, W. Freeman","doi":"10.1109/ICCV.2017.141","DOIUrl":null,"url":null,"abstract":"Humans infer rich knowledge of objects from both auditory and visual cues. Building a machine of such competency, however, is very challenging, due to the great difficulty in capturing large-scale, clean data of objects with both their appearance and the sound they make. In this paper, we present a novel, open-source pipeline that generates audiovisual data, purely from 3D object shapes and their physical properties. Through comparison with audio recordings and human behavioral studies, we validate the accuracy of the sounds it generates. Using this generative model, we are able to construct a synthetic audio-visual dataset, namely Sound-20K, for object perception tasks. We demonstrate that auditory and visual information play complementary roles in object perception, and further, that the representation learned on synthetic audio-visual data can transfer to real-world scenarios.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"38 1","pages":"1260-1269"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Humans infer rich knowledge of objects from both auditory and visual cues. Building a machine of such competency, however, is very challenging, due to the great difficulty in capturing large-scale, clean data of objects with both their appearance and the sound they make. In this paper, we present a novel, open-source pipeline that generates audiovisual data, purely from 3D object shapes and their physical properties. Through comparison with audio recordings and human behavioral studies, we validate the accuracy of the sounds it generates. Using this generative model, we are able to construct a synthetic audio-visual dataset, namely Sound-20K, for object perception tasks. We demonstrate that auditory and visual information play complementary roles in object perception, and further, that the representation learned on synthetic audio-visual data can transfer to real-world scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向对象感知的可听形状生成建模
人类从听觉和视觉线索中推断出对物体的丰富知识。然而,建造一台具有这种能力的机器是非常具有挑战性的,因为很难捕获大规模的、干净的物体数据,包括它们的外观和声音。在本文中,我们提出了一种新颖的开源管道,可以纯粹从3D对象形状及其物理属性生成视听数据。通过与录音和人类行为研究的比较,我们验证了它产生的声音的准确性。使用这个生成模型,我们能够构建一个合成的视听数据集,即Sound-20K,用于对象感知任务。我们证明了听觉和视觉信息在物体感知中起着互补的作用,而且,在合成视听数据上学习到的表示可以转移到现实世界的场景中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Odometry for Pixel Processor Arrays Rolling Shutter Correction in Manhattan World Sketching with Style: Visual Search with Sketches and Aesthetic Context Active Learning for Human Pose Estimation Attribute-Enhanced Face Recognition with Neural Tensor Fusion Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1