Scalable I/O-Aware Job Scheduling for Burst Buffer Enabled HPC Clusters

Stephen Herbein, D. Ahn, D. Lipari, T. Scogland, M. Stearman, Mark Grondona, J. Garlick, B. Springmeyer, M. Taufer
{"title":"Scalable I/O-Aware Job Scheduling for Burst Buffer Enabled HPC Clusters","authors":"Stephen Herbein, D. Ahn, D. Lipari, T. Scogland, M. Stearman, Mark Grondona, J. Garlick, B. Springmeyer, M. Taufer","doi":"10.1145/2907294.2907316","DOIUrl":null,"url":null,"abstract":"The economics of flash vs. disk storage is driving HPC centers to incorporate faster solid-state burst buffers into the storage hierarchy in exchange for smaller parallel file system (PFS) bandwidth. In systems with an underprovisioned PFS, avoiding I/O contention at the PFS level will become crucial to achieving high computational efficiency. In this paper, we propose novel batch job scheduling techniques that reduce such contention by integrating I/O awareness into scheduling policies such as EASY backfilling. We model the available bandwidth of links between each level of the storage hierarchy (i.e., burst buffers, I/O network, and PFS), and our I/O-aware schedulers use this model to avoid contention at any level in the hierarchy. We integrate our approach into Flux, a next-generation resource and job management framework, and evaluate the effectiveness and computational costs of our I/O-aware scheduling. Our results show that by reducing I/O contention for underprovisioned PFSes, our solution reduces job performance variability by up to 33% and decreases I/O-related utilization losses by up to 21%, which ultimately increases the amount of science performed by scientific workloads.","PeriodicalId":20515,"journal":{"name":"Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing","volume":"87 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2907294.2907316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

Abstract

The economics of flash vs. disk storage is driving HPC centers to incorporate faster solid-state burst buffers into the storage hierarchy in exchange for smaller parallel file system (PFS) bandwidth. In systems with an underprovisioned PFS, avoiding I/O contention at the PFS level will become crucial to achieving high computational efficiency. In this paper, we propose novel batch job scheduling techniques that reduce such contention by integrating I/O awareness into scheduling policies such as EASY backfilling. We model the available bandwidth of links between each level of the storage hierarchy (i.e., burst buffers, I/O network, and PFS), and our I/O-aware schedulers use this model to avoid contention at any level in the hierarchy. We integrate our approach into Flux, a next-generation resource and job management framework, and evaluate the effectiveness and computational costs of our I/O-aware scheduling. Our results show that by reducing I/O contention for underprovisioned PFSes, our solution reduces job performance variability by up to 33% and decreases I/O-related utilization losses by up to 21%, which ultimately increases the amount of science performed by scientific workloads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持突发缓冲的HPC集群的可扩展I/ o感知作业调度
闪存与磁盘存储的经济性促使高性能计算中心将更快的固态突发缓冲区合并到存储层次结构中,以换取更小的并行文件系统(PFS)带宽。在PFS配置不足的系统中,避免PFS级别的I/O争用对于实现高计算效率至关重要。在本文中,我们提出了新的批处理作业调度技术,通过将I/O感知集成到调度策略(如EASY回填)中来减少这种争用。我们对存储层次结构的每个级别(即突发缓冲区、I/O网络和PFS)之间的链路的可用带宽进行建模,并且我们的I/O感知调度器使用该模型来避免层次结构中任何级别的争用。我们将我们的方法集成到下一代资源和作业管理框架Flux中,并评估了我们的I/ o感知调度的有效性和计算成本。我们的结果表明,通过减少配置不足的pfse的I/O争用,我们的解决方案将作业性能可变性降低了33%,并将I/O相关的利用率损失降低了21%,最终增加了科学工作负载执行的科学量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keynote Lecture : Learning Representations: Opportunities for Parallel and Distributed Computing Keynote Lecture : Gradient compression for efficient distributed deep learning Keynote Lecture : Neural circuit policies Keynote Lecture : Towards Robust, Large-scale Concurrent and Distributed Programming The Supercomputer "Fugaku" and Arm-SVE enabled A64FX processor for energy-efficiency and sustained application performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1