J.-B. Durand, F. Forbes, C.D. Phan, L. Truong, H.D. Nguyen, F. Dama
{"title":"Bayesian non-parametric spatial prior for traffic crash risk mapping: A case study of Victoria, Australia","authors":"J.-B. Durand, F. Forbes, C.D. Phan, L. Truong, H.D. Nguyen, F. Dama","doi":"10.1111/anzs.12369","DOIUrl":null,"url":null,"abstract":"<p>We develop a Bayesian non-parametric (BNP) model coupled with Markov random fields (MRFs) for risk mapping, to infer homogeneous spatial regions in terms of risks. In contrast to most existing methods, the proposed approach does not require an arbitrary commitment to a specified number of risk classes and determines their risk levels automatically. We consider settings in which the relevant information are counts and propose a so-called BNP hidden MRF (BNP-HMRF) model that is able to handle such data. The model inference is carried out using a variational Bayes expectation–maximisation algorithm and the approach is illustrated on traffic crash data in the state of Victoria, Australia. The obtained results corroborate well with the traffic safety literature. More generally, the model presented here for risk mapping offers an effective, convenient and fast way to conduct partition of spatially localised count data.</p>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":"64 2","pages":"171-204"},"PeriodicalIF":0.8000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anzs.12369","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12369","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
We develop a Bayesian non-parametric (BNP) model coupled with Markov random fields (MRFs) for risk mapping, to infer homogeneous spatial regions in terms of risks. In contrast to most existing methods, the proposed approach does not require an arbitrary commitment to a specified number of risk classes and determines their risk levels automatically. We consider settings in which the relevant information are counts and propose a so-called BNP hidden MRF (BNP-HMRF) model that is able to handle such data. The model inference is carried out using a variational Bayes expectation–maximisation algorithm and the approach is illustrated on traffic crash data in the state of Victoria, Australia. The obtained results corroborate well with the traffic safety literature. More generally, the model presented here for risk mapping offers an effective, convenient and fast way to conduct partition of spatially localised count data.
期刊介绍:
The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association.
The main body of the journal is divided into three sections.
The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data.
The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context.
The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.