Probabilistic Word Embeddings in Kinematic Space

Adarsh Jamadandi, Rishabh Tigadoli, R. Tabib, U. Mudenagudi
{"title":"Probabilistic Word Embeddings in Kinematic Space","authors":"Adarsh Jamadandi, Rishabh Tigadoli, R. Tabib, U. Mudenagudi","doi":"10.1109/ICPR48806.2021.9412050","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method for learning representations in the space of Gaussian-like distribution defined on a novel geometrical space called Kinematic space. The utility of non-Euclidean geometry for deep representation learning has recently been in vogue, specifically models of hyperbolic geometry such as Poincaré and Lorentz models have proven useful for learning hierarchical representations. Going beyond manifolds with constant curvature, albeit has better representation capacity might lead to unhanding of computationally tractable tools like Riemannian optimization methods. Here, we explore a pseudo-Riemannian auxiliary Lorentzian space called Kinematic space and provide a principled approach for constructing a Gaussian-like distribution, which is compatible with gradient-based learning methods, to formulate a probabilistic word embedding framework. Contrary to, mapping lexically distributed representations to a single point vector in Euclidean space, we advocate for mapping entities to density-based representations, as it provides explicit control over the uncertainty in representations. We test our framework by embedding WordNet-Noun hierarchy, a large lexical database, our experiments report strong consistent improvements in Mean Rank and Mean Average Precision (MAP) values compared to probabilistic word embedding frameworks defined on Euclidean and hyperbolic spaces. We show an average improvement of 72.68% in MAP and 82.60% in Rank compared to the hyperbolic version. Our work serves as evidence for the utility of novel geometrical spaces for learning hierarchical representations.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"8 1","pages":"8759-8765"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th International Conference on Pattern Recognition (ICPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR48806.2021.9412050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a method for learning representations in the space of Gaussian-like distribution defined on a novel geometrical space called Kinematic space. The utility of non-Euclidean geometry for deep representation learning has recently been in vogue, specifically models of hyperbolic geometry such as Poincaré and Lorentz models have proven useful for learning hierarchical representations. Going beyond manifolds with constant curvature, albeit has better representation capacity might lead to unhanding of computationally tractable tools like Riemannian optimization methods. Here, we explore a pseudo-Riemannian auxiliary Lorentzian space called Kinematic space and provide a principled approach for constructing a Gaussian-like distribution, which is compatible with gradient-based learning methods, to formulate a probabilistic word embedding framework. Contrary to, mapping lexically distributed representations to a single point vector in Euclidean space, we advocate for mapping entities to density-based representations, as it provides explicit control over the uncertainty in representations. We test our framework by embedding WordNet-Noun hierarchy, a large lexical database, our experiments report strong consistent improvements in Mean Rank and Mean Average Precision (MAP) values compared to probabilistic word embedding frameworks defined on Euclidean and hyperbolic spaces. We show an average improvement of 72.68% in MAP and 82.60% in Rank compared to the hyperbolic version. Our work serves as evidence for the utility of novel geometrical spaces for learning hierarchical representations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
运动空间中的概率词嵌入
在本文中,我们提出了一种学习类高斯分布空间中表示的方法,该空间定义在一种新的几何空间——运动学空间上。非欧几里得几何在深度表征学习中的应用最近很流行,特别是双曲几何模型,如庞加莱模型和洛伦兹模型,已被证明对学习分层表征很有用。尽管具有更好的表示能力,但超越具有恒定曲率的流形可能导致无法处理计算上易于处理的工具,如黎曼优化方法。在这里,我们探索了伪黎曼辅助洛伦兹空间(称为运动学空间),并提供了一种构造类高斯分布的原则方法,该方法与基于梯度的学习方法兼容,以形成概率词嵌入框架。与将词法分布表示映射到欧几里得空间中的单点向量相反,我们主张将实体映射到基于密度的表示,因为它提供了对表示中的不确定性的显式控制。我们通过嵌入wordnet -名词层次结构(一个大型词汇数据库)来测试我们的框架,我们的实验报告了与定义在欧几里得和双曲空间上的概率词嵌入框架相比,平均秩和平均精度(MAP)值有很强的一致性改进。我们显示,与双曲版本相比,MAP平均提高了72.68%,Rank平均提高了82.60%。我们的工作为新的几何空间在学习分层表示中的效用提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trajectory representation learning for Multi-Task NMRDP planning Semantic Segmentation Refinement Using Entropy and Boundary-guided Monte Carlo Sampling and Directed Regional Search A Randomized Algorithm for Sparse Recovery An Empirical Bayes Approach to Topic Modeling To Honor our Heroes: Analysis of the Obituaries of Australians Killed in Action in WWI and WWII
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1