{"title":"Bidirectional air turbines for oscillating water column systems: Fast selection applying turbomachinery scaling laws","authors":"Thomas H. Carolus, Christoph Moisel","doi":"10.1016/j.ijome.2017.03.006","DOIUrl":null,"url":null,"abstract":"<div><p>The collector of an oscillating water column system (OWC) for wave energy utilization requires a bidirectional turbine that copes with pneumatic power while providing specified impedance or, in terms of an OWC designer, “damping”. Damping is realized by keeping to a specific flow rate through the turbine at a given pressure head due to the individual performance characteristic of the turbine. With the number of turbine designs increasing designers of OWC systems are facing more options to select and dimension a bidirectional turbine. Energy yield, size and hence cost of the turbine and electric generator, operational behaviour, envisaged control strategy and noise emitted by the turbine are possible criteria for selection.</p><p>The primary objective of this paper is to describe a simple procedure for making a first choice of a turbine for a particular OWC application. Here we confine ourselves to a family of reaction type of turbines (axial-flow Wells and mixed-flow turbines by Moisel) with their approximately linear pressure head/volume flow rate characteristics. Starting point is the set of non-dimensional steady-state characteristics of each turbine in the family. Utilizing standard scaling laws and a very simple time domain model for the cyclic turbine operation (i.e. based one single sea state and turbine operation assumed to be fixed rotational speed), first estimates of turbine size and rotor speed, number for stages or flows, and performance curves can be determined. The resulting turbine may also serve as a starting configuration for a refined analysis, e.g. the optimization of the turbine and the complete OWC system, utilizing more complex stochastic models. Three case studies illustrate the application of the method: selection and scaling of turbines, effect of collector parameters, turbines in series and parallel.</p></div>","PeriodicalId":100705,"journal":{"name":"International Journal of Marine Energy","volume":"18 ","pages":"Pages 65-77"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ijome.2017.03.006","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Marine Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214166917300309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The collector of an oscillating water column system (OWC) for wave energy utilization requires a bidirectional turbine that copes with pneumatic power while providing specified impedance or, in terms of an OWC designer, “damping”. Damping is realized by keeping to a specific flow rate through the turbine at a given pressure head due to the individual performance characteristic of the turbine. With the number of turbine designs increasing designers of OWC systems are facing more options to select and dimension a bidirectional turbine. Energy yield, size and hence cost of the turbine and electric generator, operational behaviour, envisaged control strategy and noise emitted by the turbine are possible criteria for selection.
The primary objective of this paper is to describe a simple procedure for making a first choice of a turbine for a particular OWC application. Here we confine ourselves to a family of reaction type of turbines (axial-flow Wells and mixed-flow turbines by Moisel) with their approximately linear pressure head/volume flow rate characteristics. Starting point is the set of non-dimensional steady-state characteristics of each turbine in the family. Utilizing standard scaling laws and a very simple time domain model for the cyclic turbine operation (i.e. based one single sea state and turbine operation assumed to be fixed rotational speed), first estimates of turbine size and rotor speed, number for stages or flows, and performance curves can be determined. The resulting turbine may also serve as a starting configuration for a refined analysis, e.g. the optimization of the turbine and the complete OWC system, utilizing more complex stochastic models. Three case studies illustrate the application of the method: selection and scaling of turbines, effect of collector parameters, turbines in series and parallel.