Improvement of Dynamic Hybrid Collaborative Filtering Based on Spark

Haorui Li, Qiang Huang
{"title":"Improvement of Dynamic Hybrid Collaborative Filtering Based on Spark","authors":"Haorui Li, Qiang Huang","doi":"10.1109/ICCC47050.2019.9064416","DOIUrl":null,"url":null,"abstract":"Iterative computation due to the advantage of memory computing framework in Spark big data platform, so This paper applies ALS model recommendation algorithm on Spark platform and improves its calculation method. Considering more practical factors to get more accurate result sets, we first use C-Means clustering to classify data preprocessing, so as to reduce the calculation of redundant data and the sparsity of matrix. Secondly, the cosine similarity and Pearson similarity are applied to improve the user similarity calculation. Finally, a mixed recommendation function is constructed. On the Spark distributed large data platform, this method trains and compares the results offline and real-time through MovieLens data set, which shows that it reduces the computing time, improves the efficiency and accuracy of the algorithm.","PeriodicalId":6739,"journal":{"name":"2019 IEEE 5th International Conference on Computer and Communications (ICCC)","volume":"198 1","pages":"8-12"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 5th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC47050.2019.9064416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Iterative computation due to the advantage of memory computing framework in Spark big data platform, so This paper applies ALS model recommendation algorithm on Spark platform and improves its calculation method. Considering more practical factors to get more accurate result sets, we first use C-Means clustering to classify data preprocessing, so as to reduce the calculation of redundant data and the sparsity of matrix. Secondly, the cosine similarity and Pearson similarity are applied to improve the user similarity calculation. Finally, a mixed recommendation function is constructed. On the Spark distributed large data platform, this method trains and compares the results offline and real-time through MovieLens data set, which shows that it reduces the computing time, improves the efficiency and accuracy of the algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Spark的动态混合协同过滤的改进
由于Spark大数据平台的内存计算框架具有迭代计算的优势,因此本文将ALS模型推荐算法应用于Spark平台,并对其计算方法进行了改进。为了得到更准确的结果集,考虑到更实际的因素,我们首先使用C-Means聚类对数据进行分类预处理,以减少冗余数据的计算和矩阵的稀疏性。其次,应用余弦相似度和Pearson相似度改进用户相似度计算;最后,构造了一个混合推荐函数。该方法在Spark分布式大数据平台上,通过MovieLens数据集进行离线和实时训练,并对结果进行对比,减少了计算时间,提高了算法的效率和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning Automata-Based Scalable PCE for Load-Balancing in Multi-carrier Domain Sequences RACAC: An Approach toward RBAC and ABAC Combining Access Control A Novel Localization Method Based on FDA Beam Intersection A Lightweight Encryption Algorithm for Edge Networks in Software-Defined Industrial Internet of Things CS-Based Channel Estimation for Underwater Acoustic Time Reversal FBMC System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1