A Low-Complexity MIMO Detector Based on Fast Dual-Lattice Reduction Algorithm

Changle Jing, Xin Wang, Bin Chen, Yue Ma, Jibo Wei
{"title":"A Low-Complexity MIMO Detector Based on Fast Dual-Lattice Reduction Algorithm","authors":"Changle Jing, Xin Wang, Bin Chen, Yue Ma, Jibo Wei","doi":"10.1109/VTCFall.2016.7880859","DOIUrl":null,"url":null,"abstract":"Lattice reduction (LR) aided multiple-input multiple-output (MIMO) detectors have been considered as an option to obtain near-maximum likelihood (ML) performance. We first give the analysis to show that large signal-to-noise ratio (SNR) corresponds to the short length of the dual basis vectors. Then, in order to further alleviate the complexity of LR aided MIMO detectors while maintaining acceptable performance, we study the dual-lattice reduction methods and propose a fast dual-lattice reduction (FDLR) algorithm which minimizes the orthogonality deficiency of dual-basis. And a tree search method is presented to implement the FDLR algorithm, which enables a flexible trade-off between performance and complexity. Compared to the existing dual Lenstra-Lenstra-Lovasz (DLLL) algorithm, out proposed FDLR algorithm requires less iteration time and yields more orthogonal basis vectors. Simulation results show that FDLR aided detectors achieve better performance and lower complexity than DLLL aided detectors, especially for large MIMO system.","PeriodicalId":6484,"journal":{"name":"2016 IEEE 84th Vehicular Technology Conference (VTC-Fall)","volume":"35 8 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 84th Vehicular Technology Conference (VTC-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTCFall.2016.7880859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lattice reduction (LR) aided multiple-input multiple-output (MIMO) detectors have been considered as an option to obtain near-maximum likelihood (ML) performance. We first give the analysis to show that large signal-to-noise ratio (SNR) corresponds to the short length of the dual basis vectors. Then, in order to further alleviate the complexity of LR aided MIMO detectors while maintaining acceptable performance, we study the dual-lattice reduction methods and propose a fast dual-lattice reduction (FDLR) algorithm which minimizes the orthogonality deficiency of dual-basis. And a tree search method is presented to implement the FDLR algorithm, which enables a flexible trade-off between performance and complexity. Compared to the existing dual Lenstra-Lenstra-Lovasz (DLLL) algorithm, out proposed FDLR algorithm requires less iteration time and yields more orthogonal basis vectors. Simulation results show that FDLR aided detectors achieve better performance and lower complexity than DLLL aided detectors, especially for large MIMO system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于快速双格约简算法的低复杂度MIMO检测器
晶格约简(LR)辅助多输入多输出(MIMO)检测器被认为是获得近最大似然(ML)性能的一种选择。我们首先通过分析表明,大的信噪比对应于短的对偶基向量长度。然后,为了进一步减轻LR辅助MIMO检测器的复杂性,同时保持可接受的性能,我们研究了双晶格约简方法,并提出了一种快速双晶格约简(FDLR)算法,该算法最大限度地减少了双基的正交性缺陷。提出了一种实现FDLR算法的树搜索方法,在性能和复杂度之间进行了灵活的权衡。与现有的双Lenstra-Lenstra-Lovasz (dll)算法相比,本文提出的FDLR算法迭代时间更短,产生的正交基向量更多。仿真结果表明,FDLR辅助检测器比dll辅助检测器具有更好的性能和更低的复杂度,尤其适用于大型MIMO系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blind Signal Recognition Method of STBC Based on Multi-channel Convolutional Neural Network Welcome from the VTS President Beam Switching Solutions for Beam-Hopping Based LEO System Modeling Interference to Reuse Millimeter-wave Spectrum to In-Building Small Cells Toward 6G Interweave Shared-Use Model for Dynamic Spectrum Access in Millimeter-Wave Mobile Systems for 6G
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1