{"title":"DESIGN OF PATIENT SPECIFIC HIP PROSTHESIS BASED ON FINITE ELEMENT ANALYSIS: A COMPARATIVE STUDY","authors":"U. Snekhalatha, Raja Dhason, T. Rajalakshmi","doi":"10.4015/s1016237223500175","DOIUrl":null,"url":null,"abstract":"This study aims to develop a patient-specific hip implant for osteoarthritis conditions and to compare with intact and conventional implant. The femoral bone with head and shaft region was segmented from the pelvic griddle and converted into 3D model. The parameters such as femoral ball diameter, shaft length, acetabular cup diameter, and neck angle were measured from the segmented 3D model. In this study, designed part of hip implant was assembled together to form a customized hip implant. The von Mises stress was measured by means of Finite element analysis (FEA) method by applying various forces applied at the distal end of hip implant. The forces applied at hip implant were based on the assumption of 500 N force for standing, 2000 N force for walking, and 3000 N force for jogging condition. The minimum stress attained at the femur bone of custom-model is 1.32 MPa for 500 N loading condition, 5.3 MPa for 2000 N and 7.96 MPa for the maximum load of 3000 N. Thus the customized model experienced better stress distribution compared to conventional model under the maximum load of 3000 N. In pelvic region, the custom model attained a lower stress of 23% compared to conventional model. Thus, the study recommends the customized hip implants for the osteoarthritis conditions to avoid revision surgery.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"88 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s1016237223500175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to develop a patient-specific hip implant for osteoarthritis conditions and to compare with intact and conventional implant. The femoral bone with head and shaft region was segmented from the pelvic griddle and converted into 3D model. The parameters such as femoral ball diameter, shaft length, acetabular cup diameter, and neck angle were measured from the segmented 3D model. In this study, designed part of hip implant was assembled together to form a customized hip implant. The von Mises stress was measured by means of Finite element analysis (FEA) method by applying various forces applied at the distal end of hip implant. The forces applied at hip implant were based on the assumption of 500 N force for standing, 2000 N force for walking, and 3000 N force for jogging condition. The minimum stress attained at the femur bone of custom-model is 1.32 MPa for 500 N loading condition, 5.3 MPa for 2000 N and 7.96 MPa for the maximum load of 3000 N. Thus the customized model experienced better stress distribution compared to conventional model under the maximum load of 3000 N. In pelvic region, the custom model attained a lower stress of 23% compared to conventional model. Thus, the study recommends the customized hip implants for the osteoarthritis conditions to avoid revision surgery.
期刊介绍:
Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies.
Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.